Home About us Contact | |||
Apoptotic Signaling (apoptotic + signaling)
Terms modified by Apoptotic Signaling Selected AbstractsMitogenic and Apoptotic Signaling by Carotenoids: Involvement of a Redox MechanismIUBMB LIFE, Issue 1 2001Paola Palozza Abstract The potential for carotenoids to modulate tumor growth is currently under investigation. Although epidemiological studies evidence that a high intake of vegetables, rich in carotenoids, decreases cancer incidence and mortality, clinical trials demonstrate that supplementation of ,-carotene to chronic smokers or to asbestos workers increases the risk for lung cancer. These contradictory findings have renewed interest in elucidating the mechanism of action of carotenoids in biological systems. In this review, we show evidence for mitogenic and apoptotic effects of carotenoids and we support the hypothesis that these molecules may act as anticarcinogens or as procarcinogens through a redox mechanism. In particular, we report demonstrations for the anti-oxidant or pro-oxidant effects of carotenoids in vitro and in vivo, focusing our attention on the relationship existing between cell growth and redox status. [source] Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytesGLIA, Issue 15 2010J. Watzlawik Abstract Purpose: Human remyelination promoting IgM mAbs target oligodendrocytes (OLs) and function in animal models of multiple sclerosis (MS). However, their mechanism of action is unknown. This study seeks to identify the cellular mechanism of action of a recombinant human IgM on OL survival. Methods: Binding of rHIgM22 to the surface of rat OLs was studied by co-localization with various markers. RHIgM22-mediated effects on apoptotic signaling in OLs, differentiation markers, and signaling molecules were detected by Western blotting and immunoprecipitation. Results: RHIgM22 co-localized with integrin ,3 but not other integrin ,-chains in OLs. Downstream of integrin ,3 we identified Src family kinase (SFK) Lyn as a key player of rHIgM22-mediated actions in OLs. Lyn immunoprecipitated in a complex together with integrin ,v,3 and PDGF,R. Lyn expression was 9-fold up-regulated and Lyn activation was 3-fold higher inrHIgM22-treated OL cultures compared with controls. RHIgM22 inhibited apoptotic signaling by greater than 10-fold reduction of caspase-3 and capsase-9 cleavage and reduced by 4-fold expression of differentiation markers MBP and MOG in OLs. SFK inhibitors PP2 and SU6656 inhibited Lyn activity and restored caspase-cleavage in OLs. A human IgM that did not promote remyelination and medium wereused as controls. Conclusions: rHIgM22 prevented apoptotic signaling andinhibited OL differentiation by Lyn implying thatIgM-mediated remyelination is due toprotection of OPC and OLs rather than promotion of OPC differentiation. © 2010 Wiley-Liss, Inc. [source] Muscle precursor cells isolated from aged rats exhibit an increased tumor necrosis factor-, responseAGING CELL, Issue 1 2009Simon J. Lees Summary Improving muscle precursor cell (MPC, muscle-specific stem cells) function during aging has been implicated as a key therapeutic target for improving age-related skeletal muscle loss. MPC dysfunction during aging can be attributed to both the aging MPC population and the changing environment in skeletal muscle. Previous reports have identified elevated levels of tumor necrosis factor-, (TNF-,) in aging, both circulating and locally in skeletal muscle. The purpose of the present study was to determine if age-related differences exist between TNF-,-induced nuclear factor-kappa B (NF-,B) activation and expression of apoptotic gene targets. MPCs isolated from 32-month-old animals exhibited an increased NF-,B activation in response to 1, 5, and 20 ng mL,1 TNF-,, compared to MPCs isolated from 3-month-old animals. No age differences were observed in the rapid canonical signaling events leading to NF-,B activation or in the increase in mRNA levels for TNF receptor 1, TNF receptor 2, TNF receptor-associated factor 2 (TRAF2), or Fas (CD95) observed after 2 h of TNF-, stimulation. Interestingly, mRNA levels for TRAF2 and the cell death-inducing receptor, Fas (CD95), were persistently upregulated in response to 24 h TNF-, treatment in MPCs isolated from 32-month-old animals, compared to 3-month-old animals. Our data indicate that age-related differences may exist in the regulatory mechanisms responsible for NF-,B inactivation, which may have an effect on TNF-,-induced apoptotic signaling. These findings improve our understanding of the interaction between aged MPCs and the changing environment associated with age, which is critical for the development of potential clinical interventions aimed at improving MPC function with age. [source] Oral malodorous compound causes apoptosis and genomic DNA damage in human gingival fibroblastsJOURNAL OF PERIODONTAL RESEARCH, Issue 4 2008K. Yaegaki Background and Objective:, Volatile sulfur compounds are the main cause of halitosis. Hydrogen sulfide is one of these volatile sulfur compounds and the principal malodorous compound in physiological halitosis. Periodontally pathogenic activities of hydrogen sulfide have been previously reported. Hydrogen sulfide induces apoptotic cell death in aorta smooth muscle cells and in other tissues. Apoptosis plays an important role in the onset and progress of periodontitis. The objective of this study was to determine whether hydrogen sulfide causes apoptosis in human gingival fibroblasts. Material and methods:, Necrotic cells were detected using a lactate dehydrogenase assay. Apoptosis was ascertained using a histone-complexed DNA fragment assay and flow cytometry. The level of caspase 3, a key enzyme in apoptotic signaling, was also measured, and the effects of hydrogen sulfide on reactive oxygen species and superoxide dismutase were assessed. DNA damage caused by hydrogen sulfide was examined by means of single-cell gel electrophoresis. Results:, After 72 h of incubation with 100 ng/mL of hydrogen sulfide, necrosis was found in less than 10% of human gingival fibroblasts, whereas apoptosis was significantly increased (p < 0.05). Superoxide dismutase activity was strongly inhibited, and reactive oxygen species production was enhanced, after 48 and 72 h of incubation. Caspase 3 activity was also increased after 72 h of incubation (p < 0.01). Tail length, percentage of DNA in tail, and tail moment, measured by single-cell gel electrophoresis, were also intensified after 72 h of incubation (p < 0.001). Conclusion:, Hydrogen sulfide caused apoptosis and DNA damage in human gingival fibroblasts. An increased level of reactive oxygen species stimulated by hydrogen sulfide may induce apoptosis and DNA strand breaks. [source] The glycoprotein Ib,,von Willebrand factor interaction induces platelet apoptosisJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2 2010S. LI Summary.,Background: The interaction of glycoprotein (GP) Ib, with von Willebrand factor (VWF) initiates platelet adhesion, and simultaneously triggers intracellular signaling cascades leading to platelet aggregation and thrombus formation. Some of the signaling events are similar to those occurring during apoptosis, however, it is still unclear whether platelet apoptosis is induced by the GPIb,,VWF interaction. Objectives: To investigate whether the GPIb,,VWF interaction induces platelet apoptosis and the role of 14-3-3, in apoptotic signaling. Methods: Apoptotic events were assessed in platelets or Chinese hamster ovary (CHO) cells expressing wild-type (1b9) or mutant GPIb,IX interacting with VWF by flow cytometry or western blotting. Results: Ristocetin-induced GPIb,,VWF interaction elicited apoptotic events in platelets, including phosphatidylserine exposure, elevations of Bax and Bak, gelsolin cleavage, and depolarization of mitochondrial inner transmembrane potential. Apoptotic events were also elicited in platelets exposed to pathologic shear stresses in the presence of VWF; however, the shear-induced apoptosis was eliminated by the anti-GPIb, antibody AK2. Furthermore, apoptotic events occurred in 1b9 cells stimulated with VWF and ristocetin, but were significantly diminished in two CHO cell lines expressing mutant GPIb,IX with GPIb, truncated at residue 551 or a serine-to-alanine mutation at the 14-3-3,-binding site in GPIb,. Conclusions: This study demonstrates that the GPIb,,VWF interaction induces apoptotic events in platelets, and that the association of 14-3-3, with the cytoplasmic domain of GPIb, is essential for apoptotic signaling. This finding may suggest a novel mechanism for platelet clearance or some thrombocytopenic diseases. [source] |