Apoptotic Mechanisms (apoptotic + mechanism)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


In vivo analysis reveals different apoptotic pathways in pre- and postmigratory cerebellar granule cells of rabbit

DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2004
Laura Lossi
Abstract Naturally occurring neuronal death (NOND) has been described in the postnatal cerebellum of several species, mainly affecting the cerebellar granule cells (CGCs) by an apoptotic mechanism. However, little is known about the cellular pathway(s) of CGC apoptosis in vivo. By immunocytochemistry, in situ detection of fragmented DNA, electron microscopy, and Western blotting, we demonstrate here the existence of two different molecular mechanisms of apoptosis in the rabbit postnatal cerebellum. These two mechanisms affect CGCs at different stages of their maturation and migration. In the external granular layer, premigratory CGCs undergo apoptosis upon phosphorylation of checkpoint kinase 1 (Chk1), and hyperphosphorylation of retinoblastoma protein. In postmigratory CGCs within the internal granular layer, caspase 3 and to a lesser extent 7 and 9 are activated, eventually leading to poly-ADP-ribose polymerase-1 (PARP-1) cleavage and programmed cell death. We conclude that NOND of premigratory CGCs is linked to activation of DNA checkpoint and alteration of normal cell cycle, whereas in postmigratory CGCs apoptosis is, more classically, dependent upon caspase 3 activation. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 437,452, 2004 [source]


NF-ATc2 induces apoptosis in Burkitt's lymphoma cells through signaling via the B cell antigen receptor

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2003
Eisaku Kondo
Abstract Cross-linking of the B cell antigen receptor (BCR) with an anti-IgM antibody has been shown to induce dramatic apoptosis in type I Burkitt's lymphoma (BL) cells. However, the apoptotic mechanism triggered via BCR remains unknown. Here we reports a mechanism of BCR ligation-induced apoptosis involving protein phosphatase calcineurin and its specific substrate, transcriptional factor NF-AT. In response to BCR cross-linking, endogenous calcineurin was rapidly activated, and this facilitated nuclear translocation of NF-ATc2, a subtype of NF-AT members. Interestingly, nuclear-imported NF-ATc2 functioned pro-apoptotically in BL cells. The effect of NF-ATc2 was efficiently blocked with FK506, which prevented its nuclear translocation through inactivation of calcineurin. In addtion, TR3 induction during BCR cross-linking was reduced by FK506 and the VIVIT peptide, which is a highly selective inhibitor for NF-AT. This strongly suggests that activation of NF-ATc2 by calcineurin is essential for TR3 recruitment, and that TR3 can be considered as a candidate for death effector in BCR-mediated apoptosis. Therefore, NF-ATc2 plays a crucial role in BCR-mediated apoptosis in type IBL, providing greater insight into unique BL characteristics through BCR signaling. [source]


DNA methylation and histone modification regulate silencing of OPG during tumor progression,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2009
Tung-Ying Lu
Abstract The identification of molecules that are down-regulated in malignant phenotype is important for understanding tumor biology and their role in tumor suppression. We compared the expression profile of four normal nasal mucosal (NNM) epithelia and a series of nasopharyngeal cancinoma (NPC) cell lines using cDNA microarray and confirmed the actual expression of the selected genes, and found osteoprotegerin (OPG) to be ubiquitously deficient in NPC cells. We also found OPG to be down-regulated in various cancer cell lines, including oral, cervical, ovarian, lung, breast, pancreas, colon, renal, prostate cancer, and hepatoma. Administration of recombinant OPG (rOPG) brought about a reduction in cancer cell growth through apoptotic mechanism. We generated eleven monoclonal antibodies (MAbs) against OPG to study OPG's expression and biological functions in cancer cells. OPG was detected in the tumor stromal regions, but not in the cancer cell per se in surgical specimens of liver cancer. Quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) revealed that OPG was down-regulated in NPC tissues compared with normal nasal polyp (NNP) tissues. In addition, we showed OPG silencing to be associated with promoter methylation as well as histone modifications. In OPG-silenced cancer cell lines, the OPG gene promoter CpG dinucleotides were highly methylated. Compared to normal cells, silenced OPG gene in cancer cells were found to have reduced histone 3 lysine 4 tri-methylation (H3K4me3) and increased histone 3 lysine 27 tri-methylation (H3K27me3). Taken together, these results suggest that OPG silencing in carcinoma cancer cells occurs through epigenetic repression. J. Cell. Biochem. 108: 315,325, 2009. © 2009 Wiley-Liss, Inc. [source]


Nitric oxide protects osteoblasts from oxidative stress-induced apoptotic insults via a mitochondria-dependent mechanism,

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 10 2006
Chia-Chen Chang
Abstract Nitric oxide (NO) contributes to the regulation of osteoblast activities. In this study, we evaluated the protective effects of NO pretreatment on oxidative stress-induced osteoblast apoptosis and its possible mechanism using neonatal rat calvarial osteoblasts as the experimental model. Exposure of osteoblasts to sodium nitroprusside (SNP) at a low concentration of 0.3 mM significantly increased cellular NO levels without affecting cell viability. However, when the concentration reached a high concentration of 2 mM, SNP increased the levels of intracellular reactive oxygen species and induced osteoblast injuries. Thus, administration of 0.3 and 2 mM SNP in osteoblasts were respectively used as sources of NO and oxidative stress. Pretreatment with NO for 24 h significantly ameliorated the oxidative stress-caused morphological alterations and decreases in alkaline phosphatase activity, and reduced cell death. Oxidative stress induced osteoblast death via an apoptotic mechanism, but NO pretreatment protected osteoblasts against the toxic effects. The mitochondrial membrane potential was significantly reduced following exposure to the oxidative stress. However, pretreatment with NO significantly lowered the suppressive effects. Oxidative stress increased cellular Bax protein production and cytochrome c release from mitochondria. Pretreatment with NO significantly decreased oxidative stress-caused augmentation of Bax and cytochrome c protein levels. In parallel with cytochrome c release, oxidative stress induced caspase-3 activation and DNA fragmentation. Pretreatment with NO significantly reduced the oxidative stress-enhanced caspase-3 activation and DNA damage. Results of this study show that NO pretreatment can protect osteoblasts from oxidative stress-induced apoptotic insults. The protective action involves a mitochondria-dependent mechanism. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:1917,1925, 2006 [source]


The flavonoid tangeretin activates the unfolded protein response and synergizes with imatinib in the erythroleukemia cell line K562

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 6 2010
Sofie Lust
Abstract We explored the mechanism of cell death of the polymethoxyflavone tangeretin (TAN) in K562 breakpoint cluster region-abelson murine leukemia (Bcr-Abl+) cells. Flow cytometric analysis showed that TAN arrested the cells in the G2/M phase and stimulated an accumulation of the cells in the sub-G0 phase. TAN-induced cell death was evidenced by poly(ADP)-ribose polymerase cleavage, DNA laddering fragmentation, activation of the caspase cascade and downregulation of the antiapoptotic proteins Mcl-1 and Bcl-xL. Pretreatment with the pancaspase inhibitor Z-VAD-FMK_blocked caspase activation and cell cycle arrest but did not inhibit apoptosis which suggest that other cell killing mechanisms like endoplasmic reticulum (ER)-associated cell death pathways could be involved. We demonstrated that TAN-induced apoptosis was preceded by a rapid activation of the proapoptotic arm of the unfolded protein response, namely PKR-like ER kinase. This was accompanied by enhanced levels of glucose-regulated protein of 78,kDa and of spliced X-box binding protein 1. Furthermore, TAN sensitized K562 cells to the cell killing effects of imatinib via an apoptotic mechanism. In conclusion, our results suggest that TAN is able to induce apoptosis in Bcr-Abl+ cells via cell cycle arrest and the induction of the unfolded protein response, and has synergistic cytotoxicity with imatinib. [source]


Role of gonadotropin-releasing hormone (GnRH) in the regulation of gonadal differentiation in the gilthead seabream (Sparus aurata)

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2007
L. Soverchia
Abstract It has been proposed that gonadotropin-releasing hormone (GnRH) plays an autocrine/paracrine regulatory role in mammalian and fish ovaries. The marine teleost gilthead seabream is an interesting model since, during the life span of the fish, gonadal tissues develop first as testes, which then regress allowing the development of ovarian follicles. Recent studies carried out in ovaries of the gilthead seabream have demonstrated that various GnRH transcripts as well as GnRH splicing variants are expressed. The mRNA level of several GnRH forms in the female and male areas of the switching gonad, and their possible role in this process, were further investigated. The results here reported show that sGnRH, cGnRH-II, and sbGnRH transcripts are locally expressed during gilthead seabream gonadal differentiation; the expression of the three GnRH forms was found to differ among the morphologically defined areas of the switching gonad, as demonstrated by applying reverse transcription-polymerase chain reaction (RT-PCR), together with in situ hybridization, and semiquantitative PCR analyses. Moreover, the hypothesis that GnRH forms may regulate testicular regression via an apoptotic mechanism was investigated by analyzing the different areas of switching gonads for caspase-3 activity as a measure of apoptosis. Our results showed a marked increase of caspase-3 activity in the area corresponding to the regressing testes in which a significant decrease of testosterone production was also found. The present findings demonstrate that the changes in the endogenous GnRH transcripts could be related with the gonadal differentiation in gilthead seabream, and that exogenous GnRH plays a role by stimulating apoptosis in the degenerating testis. Mol. Reprod. Dev. 74: 57,67, 2007. © 2006 Wiley-Liss, Inc. [source]


Comparison of several techniques for the detection of apoptotic astrocytes in vitro

CELL PROLIFERATION, Issue 2 2001
F. Micoud
Implication of apoptosis in numerous physiological and pathological processes has resulted in the development of numerous methods to detect apoptosis, but none of them is adapted to all cell types. In this study, we induced apoptosis on murine immortalized astrocytes with urine from multiple sclerosis (MS) patients. Among techniques allowing the detection of apoptotic cells, only a few are adapted to adherent cells such as astrocytes. We compared several techniques (propidium iodide labelling and flow cytometry analysis, TUNEL and annexin V labelling in immunofluorescence, DNA ladder, ELISA tests to detect nucleosomes) in order to choose the method best adapted to our adherent cellular model and to discuss their practicability for the detection of apoptosis on adherent cells. For technical course, propidium iodide labelling followed by flow cytometry analysis as a quantitative technique, and TUNEL in IF (easier and quicker than propidium iodide) as a semiquantitative test were both retained as best adapted to our case. Moreover, in our model, we have observed that phosphatydilserine externalization and DNA fragmentation were concomittant after induction of apoptosis. Techniques studied in this article would allow an enlarged study of the apoptotic mechanism in several pathologies by culture of adherent cells sensitive to apoptosis in vitro. [source]


Fibrinogen-CD11b/CD18 interaction activates the NF-,B pathway and delays apoptosis in human neutrophils

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2003
Carolina Rubel
Abstract The regulation of neutrophil half-life by members of the coagulation cascade is critical for the resolution of the inflammatory response. We have demonstrated that soluble fibrinogen (sFbg) delays human neutrophil (PMN) apoptosis through a mechanism that involves CD11b interactions, and phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase,1/2 (ERK1/2). Since NF-,B is a key element in the regulation of apoptotic mechanisms in several immune cells, we investigated whether NF-,B is involved in the control of PMN survival by sFbg. We showthat sFbg triggers inhibitor protein ,B (I,B-,) degradation and NF-,B activation. Furthermore, pharmacological inhibition of NF-,B abrogates sFbg effects on apoptosis. In addition, specific inhibition of MAPK ERK1/2 significantly reduces NF-,B translocation by sFbg, suggesting a relationship between ERK1/2 and NF-,B activation. Similar results are obtained when granulocytic-differentiated HL-60 cells are treated with sFbg, making this model highly attractive for integrin-induced gene expression studies. It can be concluded that NF-,B participates in the prevention of apoptosis induced by sFbg with the participation of MAPK ERK1/2. These results shed light on the molecular mechanisms that control human granulocyte apoptosis, and suggest that NF-,B regulation may be of benefit for the resolution of the inflammatory response. [source]


Apoptosis and chemo-resistance in colorectal cancer

JOURNAL OF SURGICAL ONCOLOGY, Issue 1 2007
S.G. Prabhudesai MS
Abstract Systemic chemotherapy plays an integral part in treating advanced colorectal cancer. However 50% of patients respond poorly or have disease progression due to resistance to chemotherapeutic agents. This article reviews the pathways that regulate apoptosis, apoptotic mechanisms through which chemotherapeutic agents mediate their effect and how deregulation of apoptotic proteins may contribute to chemo-resistance. Also discussed are potential therapeutic strategies designed to target these proteins and thereby improve response rates to chemotherapy in colorectal cancer. J. Surg. Oncol. 2007;96:77,88. © 2007 Wiley-Liss, Inc. [source]


The role of the intrinsic apoptosis pathway in platelet life and death

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2009
B. T. KILE
Summary., In recent years, it has become increasingly apparent that the production of platelets and their subsequent life span in the circulation are regulated, at least in part, by apoptotic mechanisms. There is also evidence implicating the apoptotic machinery in the regulation of platelet functional responses. This review examines the role of the intrinsic apoptosis pathway, regulated by the Bcl-2 family of proteins, in platelet biology. [source]


Lack of apoptosis in patients with progressive external ophthalmoplegia and mutated adenine nucleotide translocator-1 gene

MUSCLE AND NERVE, Issue 2 2002
Gigliola Fagiolari PhD
Abstract Adenine nucleotide translocator-1 (ANT-1), encoded by chromosome 4 (4q34-35 locus), is a component of the mitochondrial permeability transition pores that are involved in apoptotic mechanisms. We studied muscle biopsies from seven individuals with autosomal dominant progressive external ophthalmoplegia caused by ANT-1 mutations. We found no instance of terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) positivity nor significant expression of apoptosis-related proteins. Furthermore, there was no morphological evidence of apoptosis at the ultrastructural level. Thus, degeneration of muscle in this disorder is nonapoptotic. © 2002 Wiley Periodicals, Inc. Muscle Nerve 26: 265,269, 2002 [source]


Phosphorylation of retinoblastoma protein in rat brain after transient middle cerebral artery occlusion

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2000
T. Hayashi
Although mature neurones do not replicate genomic DNA, some cell cycle-related kinases are aberrantly activated in neurones after ischaemia. As hyper-phosphorylation of retinoblastoma (Rb) protein is the common pathway in mitotic signal cascade, this study investigated the phosphorylation state of the Rb protein as well as its mRNA level in rat brain after transient middle cerebral artery (MCA) occlusion. Immunohisto-chemical analysis revealed that neurones in the sham-operated brain expressed Rb protein without the hyperphosphorylated form. Immunoreactivity for the hyperphosphorylated form of Rb protein progressively increased from 1 h to 3 days after ischaemia in neurones in the MCA territory. Western blot analysis demonstrated a similar change. However, reverse transcription-polymerase chain reaction study revealed that Rb showed no definite change at the mRNA level. These results suggest that Rb protein is progressively hyper-phosphorylated in the brain after ischaemia, which may activate apoptotic mechanisms in neuronal cells of the brain after ischaemia. [source]


CD 95 mediated apoptosis in embryogenesis: implication in tooth development

ORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 3 2006
E Matalová
Structured abstract Authors,,, Matalová E, ,etková J, Blackburn J, Mí,ek I, Sharpe PT Introduction,,, Understanding of apoptotic mechanisms involved in tissue shaping is of particular interest because of possible targeted modulation of the development of organ structures such as teeth. Research of CD 95 mediated apoptosis has been focused particularly on cell death in the immune system and related disorders. However, CD 95 mediated apoptosis is also involved in embryogenesis of many organs as the kidney, the lung, the intestine and tissue networks such as the nervous system. Design,,, Narrative review. Results,,, This review briefly summarizes the current knowledge of CD 95 mediated apoptosis in embryogenesis with possible implication in tooth development. CD 95 receptor and CD 95 ligand are found at early stages of tooth development. The data suggest some positive correlations with dental apoptosis distribution, particularly in the primary enamel knot where apoptosis occurs during elimination of this structure. CD 95 deficient (lpr) adult mouse tooth phenotype, however, did not show any alterations in final tooth pattern and morphology. Conclusion,,, To date studies of apoptotic machinery during tooth development show spatial localization of many of the components together with precise and localized timing of cell death. There is still much to be learned about the regulation and importance of apoptosis in tooth development. Nevertheless, the involvement of apoptotic regulatory mechanisms interplaying with other molecules participates to the cellular cross-talk in developing tissues, which opens possible targeted modulations as suggested, e.g. for future molecular dentistry. [source]


NF-,B in Photodynamic Therapy: Discrepancies of a Master Regulator

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2006
Jean-Yves Matroule
ABSTRACT Tumor eradication by photodynamic therapy (PDT) results from the onset of distinct killing processes. In addition to the well-known necrotic and apoptotic mechanisms, PDT initiates an inflammatory response that will indirectly contribute to tumor clearance. The NF-,B transcription factor is a major regulator of inflammation modulating the expression of cyto-kines, chemokines, and adhesion molecules in various cell types in response to a large number of stimuli. Besides, NF-,B regulates the expression of antiapoptotic genes, cyclooxygenases (COXs) and metalloproteinases (MMPs) as well, thereby favoring tumor cell proliferation and dissemination. In the present review, we aim to summarize the current knowledge on NF-,B status following photosensitization of cancer cells and endothelial cells. In order to unravel the NF-,B impact in PDT tumorigenicity and recurrences, we will stress the discrepancies of this major transcription factor relative to the signaling cascades underlying its activation and the cellular effects triggered by its translocation into the nucleus and its binding to its target genes. [source]


ORIGINAL ARTICLE: Placental Fas/Fas Ligand Expression in Early Pregnancy Losses

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2008
Emine Seda Guvendag Guven
Problem, The aim of this study was to compare the expression levels of Fas and Fas ligand (FasL) in first-trimester placentas obtained from spontaneous abortions in patients with antiphospholipid antibody syndrome (APS) or factor V (FV) Leiden mutation, compared with values in placentas from induced abortions in patients negative for these conditions. Method of study, We studied explants from 6- to 10-week-old placentas that had been prepared by collagenase digestion from 10 spontaneous abortions from APS-positive patients, nine spontaneous abortions in patients positive for FV Leiden mutation, and 10 induced abortions. All tissues were analyzed by flow cytometry for expression of Fas and FasL. Results, Flow cytometric analysis showed that placental FasL expression was significantly lower in abnormal pregnancies than in normal ones. However, no such difference was observed for Fas expression. Conclusion, FasL on placental cells may be involved in the maintenance of immune privilege, thereby ensuring the safety and growth of placental tissues. Dysregulation of apoptotic mechanisms may play a critical role in spontaneous abortions. [source]


Effects of varicocele upon the expression of apoptosis-related proteins

ANDROLOGIA, Issue 4 2010
F.-W. Chang
Summary Varicocele-associated apoptosis has been recognised as a cause of male infertility. Thus, we assessed the expression of somatic apoptosis-related proteins (the typical protein-dependent apoptosis markers) in ejaculated sperm plasma from both patients with varicocele and normal donors. We evaluated the relationships between certain apoptosis-related proteins and normal semen quality. Semen samples were obtained from 25 patients with varicocele and from 10 normal fertile controls. These samples were compared using computer-assisted semen analysis for motion parameters and manual analysis for morphology, and were also assayed for apoptosis-related protein activation including caspase-3, poly-ACP-ribose polymerase (PARP), the Bcl-2 family (Bcl-2, Bak) and p53 by means of immunoblot analysis. PARP, Bak and p53 were expressed substantially more in the sperm cells of the varicocele group when compared with the normal group (P < 0.05). The expression of caspase-3 and Bcl-2 did not appear to differ between these two study groups. An increased expression of PARP, Bak and p53 for varicocele-afflicted individuals indicated an increased participation by these agents in the regulating of apoptosis in the ejaculated semen from patients with varicocele, suggesting that certain protein-development apoptotic mechanisms might originate in the cytoplasmic droplet or within mitochondria of spermatocytes and then might function within the nucleus of the cell. [source]


Astrocytes are More Resistant to Focal Cerebral Ischemia Than Neurons and Die by a Delayed Necrosis

BRAIN PATHOLOGY, Issue 4 2009
Günfer Gürer
Abstract Several recent reports proposed that astrocyte death might precede neuronal demise after focal ischemia, contrary to the conventional view that astrocytes are more resistant to injury than neurons. Interestingly, there are findings supporting each of these opposing views. To clarify these controversies, we assessed astrocyte viability after 2-h middle cerebral artery occlusion in mice. In contrast to neighboring neurons, astrocytes were alive and contained glycogen across the ischemic area 6 h after reperfusion, and at the expanding outer border of the infarct at later time points. These glycogen-positive astrocytes had intact plasma membranes. Astrocytes lost plasmalemma integrity much later than neurons: 19 ± 22 (mean ± standard deviation), 58 ± 14 and 69 ± 3% of astrocytes in the perifocal region became permeable to propidium iodide (PI) at 6, 24, 72 h after ischemia, respectively, in contrast to 81 ± 2, 96 ± 3, 97 ± 2% of neurons. Although more astrocytes in the cortical and subcortical core regions were PI-positive, their numbers were considerably less than those of neurons. Lysosomal rupture (monitored by deoxyribonuclease II immunoreactivity) followed a similar time course. Cytochrome-c immunohistochemistry showed that astrocytes maintained mitochondrial integrity longer than neurons. EM confirmed that astrocyte ultrastructure including mitochondria and lysosomes disintegrated much later than that of neurons. We also found that astrocytes died by a delayed necrosis without significantly activating apoptotic mechanisms although they rapidly swelled at the onset of ischemia. [source]