Apex Removal (apex + removal)

Distribution by Scientific Domains


Selected Abstracts


Plasticity of clonal integration in the perennial herb Linaria vulgaris after damage

FUNCTIONAL ECOLOGY, Issue 3 2006
K. HELLSTRÖM
Summary 1Clonal integration in plants can improve their ability to cope with habitat heterogeneity. Integration may increase in response to damage, such as herbivore attack, if undamaged ramets support damaged ones. To test this, we studied the effects of apex removal and substantial defoliation on the performance of the clonal perennial herb Linaria vulgaris Mill. in a common-garden growth experiment and a 13C-labelling study. 2In the growth experiment, contrary to expectations, the target ramet could compensate for damage better when the other ramets in the clone were also damaged, indicating within-clone competition for resources rather than support to damaged ramets. 3In the 13C-labelling experiment, 5·7% of the label moved to a neighbour ramet in controls. Apex removal resulted in a negative net translocation of 13C in the damaged ramet, but defoliation led to zero net translocation. 4The observed lack of support to damaged ramets in Linaria suggests that plasticity of clonal integration in this species includes competition between sibling ramets. Although young ramets may be supported, resources are not directed towards a single damaged ramet if there are more viable intact ramets in the clone. Our main results are consistent with the notion that resource allocation among ramets depends on their relative value in terms of expected fitness profits in heterogeneous environments. [source]


Response of Faidherbia albida (Del.) A. Chev., Acacia nigrescens Oliver. and Acacia nilotica (L.) Willd ex Del. seedlings to simulated cotyledon and shoot herbivory in a semi-arid savanna in Zimbabwe

AFRICAN JOURNAL OF ECOLOGY, Issue 2 2010
Sijabulile Dube
Abstract Woody plant seedling establishment is constrained by herbivory in many semi-arid savannas. We clipped shoots and cotyledons of three woody species 5-day (=,early') or 28-day (= ,late') post-emergence to simulate herbivory. Seedlings had shoot apex, one or two cotyledon(s) removed, or were retained intact. Survival rates were ,80%, ,40% and ,20% for Acacia nilotica, Acacia nigrescens and Faidherbia albida respectively. F. albida mobilized stored cotyledon reserves faster and consequently shed the cotyledons earlier than the two Acacia species. Cotyledons were shed off as late as 70 days post-emergence with 5-day shedding earlier than 28-day and cotyledon life-span decreasing with intensity of defoliation. Shoot apex removal 28-day resulted in higher compensatory growth than 5-day in all three species. Cotyledon removal had no effect on shoot length, while shoot apex removal reduced shoot length. In F. albida root growth was stimulated by shoot apex removal. We conclude that potential tolerance to herbivory in terms of seedling survival was of the order A. nilotica > A. nigrescens > F. albida, timing of shoot apex and cotyledon removal influenced seedling growth in terms of biomass and that shoot apex removal stimulated compensatory growth which is critical to seedling survival. Résumé L'établissement de jeunes plants ligneux est contrarié par l'herbivorie dans de nombreuses savanes semi arides. Nous avons coupé les pousses et les cotylédons de trois espèces ligneuses à 5-j (= tôt) ou à 28 j (= tard) après leur émergence pour simuler l'herbivorie. On coupait l'apex de la tige et un ou deux cotylédons, ou on les laissait intacts. Le taux de survie était , 80%, , 40% et , 20% pour Acacia nilotica, Acacia nigrescensetFaidherbia albida respectivement. F. albida mobilisait plus rapidement les réserves stockées dans les cotylédons et par conséquent perdait les cotylédons plus tôt que les deux espèces d'acacia. Les cotylédons étaient perdus jusqu'à 70 jours après leur apparition, les 5-j les perdant plus tôt que les 28-j, et la durée de vie des cotylédons diminuait avec l'intensité de la défoliation. L'enlèvement des cotylédons n'avait pas d'effet sur la longueur de la pousse, tandis que celui de l'apex la réduisait. Chez F. albida, la croissance des racines était stimulée par l'enlèvement de l'apex. Nous concluons que la tolérance potentielle à l'herbivorie, en termes de survie des jeunes plants, suit cet ordre-ci : A. nilotica > A. nigrescens > F. albida; que le moment de l'enlèvement du bourgeon apical et des cotylédons influence la croissance des jeunes plants en termes de biomasse; et que l'enlèvement du bourgeon apical stimule une croissance compensatoire qui est critique pour la survie du jeune plant. [source]


Tolerance to apical and foliar damage: costs and mechanisms in Raphanus raphanistrum

OIKOS, Issue 12 2007
Elin Boalt
To study mechanisms underlying plant tolerance to herbivore damage, we used apical and foliar damage as experimental treatments to study whether there are similar tolerance mechanisms to different types of damage. We also studied whether tolerance to different types of damage are associated, and whether there is a cost involved in plant tolerance to different types of herbivore damage. Our greenhouse experiment involved 480 plants from 30 full-sib families of an annual weed Raphanus raphanistrum, wild radish, which were subjected to control and two different simulated herbivore damage treatments, apex removal and foliar damage of 30% of leaf area. Apical damage significantly decreased seed production, whereas foliar damage had no effect. There was a significant genetic variation for tolerance to foliar, but not apical damage. No costs were observed in terms of negative correlation between tolerance to either damage type and fitness of undamaged plants. Tolerances to apical and foliar damage were not significantly correlated with each other. We observed a larger number of significant associations between tolerance and reproductive traits than between tolerance and vegetative traits. Plant height and leaf size of damaged plants interacted in their association to tolerance to foliar damage. Inflorescence number and pollen quantity per flower of damaged plants were positively associated with tolerance to apical damage. In late-flowering genotypes, petal size of undamaged plants and pollen quantity of damaged plants were positively associated with tolerance to foliar damage. In summary, traits involved in floral display and male fitness were associated with plant tolerance to herbivore damage. [source]