Home About us Contact | |||
AP Activity (ap + activity)
Selected AbstractsCharacterization of alanyl aminopeptidase from insecticide resistant and susceptible strains of Musca domestica L.ENTOMOLOGICAL RESEARCH, Issue 3 2008Sohail AHMED Abstract To investigate the high activity of intracellular proteases in insecticide resistant strains of Musca domestica L., purification by anion-exchange chromatography and gel filtration of one of the enzymes, alanyl aminopeptidase (Ala AP), in three strains of Musca domestica was carried out. The fractions collected by gel filtration of soluble homogenates of the three strains (571ab, 17bb and Cooper) showed a single peak of Ala AP activity. Partially purified Ala AP of the three strains showed high activity at pH 7.5. The presence or absence of Ca2+ in the assay medium did not produce any difference in activity of Ala AP in the 571ab and Cooper strains, but there was a significant difference in the 17bb strain. The activity of Ala AP in all three strains was essentially unaltered in the presence of inhibitors of serine (PMSF), cysteine (E-64) proteases and carboxypeptidases (pepstatin). Ala AP hydrolyzed alanine amino methylcoumarin (Ala-AMC) maximally, followed by phenyl alanine amino methylcoumarin (Phe-AMC), leucyl amino methylcoumarin (Leu-AMC) and ornithine amino methylcoumarin (Orn-AMC). Ala AP from the three strains showed differential activity towards various substrates. The comparison of alanyl aminopeptidase's activity from different sources is discussed. [source] Expression and regulation of alkaline phosphatases in human breast cancer MCF-7 cellsFEBS JOURNAL, Issue 5 2000Lai-Chen Tsai The effect of retinoic acid and dexamethasone on alkaline phosphatase (AP) expression was investigated in human breast cancer MCF-7 cells. Cellular AP activity was induced significantly by retinoic acid or dexamethasone in a time-dependent and dose-dependent fashion. A marked synergistic induction of AP activity was observed when the cells were incubated with both agents simultaneously. Two AP isozymes, tissue-nonspecific (TNAP) and intestinal (IAP), were shown to be expressed in MCF-7 cells as confirmed by the differential rate of thermal inactivation of these isozymes and RT-PCR. Based on the two-isozyme thermal-inactivation model, the specific activities for TNAP and IAP in each sample were analyzed. TNAP activity was induced only by retinoic acid and IAP activity was induced only by dexamethasone. Whereas dexamethasone conferred no significant effect on TNAP activity, retinoic acid was shown to inhibit IAP activity by , 50%. Interestingly, TNAP was found to be the only isozyme activity superinduced when the cells were costimulated with retinoic acid and dexamethasone. Northern blot and RT-PCR analysis were then used to demonstrate that the steady-state TNAP mRNA level was also superinduced, which indicates that the superinduction is regulated at the transcriptional or post-transcriptional levels. In the presence of the glucocorticoid receptor antagonist RU486, the dexamethasone-mediated induction of IAP activity was blocked completely as expected. However, the ability of RU486 to antagonize the action of glucocorticoid was greatly compromised in dexamethasone-mediated superinduction of TNAP activity. Furthermore, in the presence of retinoic acid, RU486 behaved as an agonist, and conferred superinduction of TNAP gene expression in the same way as dexamethasone. Taken together, these observations suggest that the induction of IAP activity by dexamethasone and the superinduction of TNAP by dexamethasone were mediated through distinct regulatory pathways. In addition, retinoic acid plays an essential role in the superinduction of TNAP gene expression by enabling dexamethasone to exert its agonist activity, which otherwise has no effect. [source] Efficiency of combined methotrexate/chloroquine therapy in adjuvant-induced arthritisFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 4 2005M.A.R.C.P. Silva Abstract The present study evaluates the effects of methotrexate (MTX) and chloroquine (CQ), and of combined MTX + CQ treatment, on the inflammatory response and on plasma and liver phosphatase and transaminase activities, employing an adjuvant-induced arthritis model in rats. Arthritis was induced by the intradermal injection of a suspension of Mycobacterium tuberculosis in mineral oil into the plantar surface of the hind paws. Development of the inflammatory response was assessed over a 21-day period. Animal groups received either: (i) MTX, administered i.p., weekly, in 0.15, 1.5, 3, 6 or 12 mg/kg doses; (ii) CQ, given intragastrically, in daily 25 or 50 mg/kg doses; or (iii) MTX + CQ, administered in two combinations (MTX1.5 mg/kg + CQ50 mg/kg, or MTX6 mg/kg + CQ50 mg/kg). At the end of the experimental period, the animals were anesthetized and killed, blood and liver samples were collected and prepared for measurement of acid and alkaline phosphatase (AP, ALP), and aspartate (AST) and alanine aminotransferase (ALT) activities. MTX at 6 and 12 mg/kg reduced the inflammatory response while CQ had no effect. MTX6 mg/kg + CQ50 mg/kg reduced the inflammatory response similar to MTX12 mg/kg, without affecting the bone marrow. Plasma AP and liver ALP activities were very elevated in the arthritic rats. While MTX treatment partially reduced both plasma AP and liver ALP activities at all doses used in the arthritic rats, CQ treatment reduced plasma AP, but increased liver AP activity. MTX + CQ treatment decreased plasma AP and liver ALP activities in the arthritic rats to control values. Plasma and liver AST activities were unaltered in the arthritic rats, and were unaffected by treatment. However, plasma and liver ALT activities were significantly reduced in the arthritic rats. While MTX or CQ treatment did not alter plasma transaminase activity in the arthritic rats, after MTX + CQ treatment, plasma ALT activity returned to normal values. In conclusion, the present data suggest that MTX + CQ treatment provides more effective anti-inflammatory protection against adjuvant-induced arthritis than does MTX alone, reverting the alterations in enzyme activities induced by this inflammatory disease in rats. [source] Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactorJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2002Vassilios I. Sikavitsas Abstract The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague,Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L -lactic- co -glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the accelerated proliferation and differentiation of marrow stromal osteoblasts, and the localization of the enhanced mineralization on the external surface of the scaffolds. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 62: 136,148, 2002 [source] Ascorbic Acid Induces Collagenase-1 in Human Periodontal Ligament Cells but Not in MC3T3-E1 Osteoblast-Like Cells: Potential Association Between Collagenase Expression and Changes in Alkaline Phosphatase Phenotype,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2003Momotoshi Shiga Abstract Ascorbic acid (AA) enhances osteoblastic differentiation by increasing collagen accumulation, which in turn, results in increased alkaline phosphatase (AP) expression in some osteogenic cells. However, in other cells, including human periodontal ligament (PDL) cells, additional osteoinductive agents are required for this response. To understand the potential basis for the maintenance of the AP phenotype of PDL cells exposed to AA, we examined the modulation of the tissue-degrading matrix metalloproteinases (MMPs) and their inhibitors by AA in short-term cell cultures. Early passage PDL cells in serum-free medium were exposed to AA for 5 days. The samples were analyzed for MMPs and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), AP, collagen I(,1), and osteocalcin. We found that AA dose-dependently increased the expression of collagenase-1, and minimally TIMP-1, but not stromelysin-1 or TIMP-2. Additionally, AA caused substantial increases in levels of type I collagen. AA was unable to increase AP activity or osteocalcin messenger RNA in PDL cells. However, the cells retained the ability to show a significantly greater AP expression in high- versus low-density cultures, and increased osteocalcin as well as AP levels when cultured in the presence of dexamethasone. Moreover, in cells exposed to dexamethasone, increases in AP and osteocalcin were accompanied by a repression of collagenase-1 expression. In contrast to PDL cells, AA did not induce collagenase but produced a significant increase in AP expression in MC3T3-E1 cells. These findings provide the first evidence that AA, by modulating both collagen and collagenase-1 expression in PDL cells, most likely contributes to a net matrix remodeling response in these cells. Furthermore, the relationship between changes in collagenase expression and alterations in AP activity in PDL and MC3T3-E1 cells suggests a potential role for collagenase in modulating the AP phenotype of cells with osteoblastic potential. [source] A novel role of alkaline phosphatase in protection from immunological liver injury in miceLIVER INTERNATIONAL, Issue 1 2002Qiang Xu Abstract:Aims/Background: Little is known about the role of alkaline phosphatase (AP) in liver diseases, except for its elevation in jaundice or cholestasis. Its substrate, endotoxin, is usually elevated in patients as well as animals with liver damage. This study aimed to provide evidence for its new role as protection against immunological liver damage. Methods: Liver injury was induced in mice by delayed-type hypersensitivity to picryl chloride. AP activity was measured using a commercial kit. Results: In acute liver injury, a significant decrease in AP activity in serum was observed but there was an increase in liver tissue. Single administration of cyclophosphamide before sensitization with picryl chloride exacerbated the liver injury, with more serious AP changes, while consecutive use after the sensitization alleviated the injury with a recovery from the changes. When liver injury proceeded for 1 week, both serum and liver showed decreased AP activity. Lipopolysaccharide facilitated alanine transaminase release from levamisole-pretreated but not non-treated hepatocytes from naive mice. However, the release was confirmed from liver slices of mice with liver injury proceeding for 1 week, even without levamisole pretreatment. Conclusion: The development of liver injury may lead to a dysfunction in AP synthesis and release. Levamisole may make normal hepatocytes, like the hepatocytes from liver-injured mice, highly sensitive to lipopolysaccharide through inhibiting AP synthesis. The findings obtained in this study suggest that AP may contribute to protection from injury by a mechanism involving neutralization of endotoxin. [source] Human articular chondrocytes secrete parathyroid hormone,related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesisARTHRITIS & RHEUMATISM, Issue 9 2010J. Fischer Objective The use of bone marrow,derived mesenchymal stem cells (MSCs) has shown promise in cell-based cartilage regeneration. A yet-unsolved problem, however, is the unwanted up-regulation of markers of hypertrophy, such as alkaline phosphatase (AP) and type X collagen, during in vitro chondrogenesis and the formation of unstable calcifying cartilage at heterotopic sites. In contrast, articular chondrocytes produce stable, nonmineralizing cartilage. The aim of this study was to address whether coculture of MSCs with human articular chondrocytes (HACs) can suppress the undesired hypertrophy in differentiating MSCs. Methods MSCs were differentiated in chondrogenic medium that had or had not been conditioned by parallel culture with HAC pellets, or MSCs were mixed in the same pellet with the HACs (1:1 or 1:2 ratio) and cultured for 6 weeks. Following in vitro differentiation, the pellets were transplanted into SCID mice. Results The gene expression ratio of COL10A1 to COL2A1 and of Indian hedgehog (IHH) to COL2A1 was significantly reduced by differentiation in HAC-conditioned medium, and less type X collagen protein was deposited relative to type II collagen. AP activity was significantly lower (P < 0.05) in the cells that had been differentiated in conditioned medium, and transplants showed significantly reduced calcification in vivo. In mixed HAC/MSC pellets, suppression of AP was dose-dependent, and in vivo calcification was fully inhibited. Chondrocytes secreted parathyroid hormone,related protein (PTHrP) throughout the culture period, whereas PTHrP was down-regulated in favor of IHH up-regulation in control MSCs after 2,3 weeks of chondrogenesis. The main inhibitory effects seen with HAC-conditioned medium were reproducible by PTHrP supplementation of unconditioned medium. Conclusion HAC-derived soluble factors and direct coculture are potent means of improving chondrogenesis and suppressing the hypertrophic development of MSCs. PTHrP is an important candidate soluble factor involved in this effect. [source] |