Linear Variation (linear + variation)

Distribution by Scientific Domains


Selected Abstracts


Vertical stress distributions around batter piles driven in cross-anisotropic media

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2009
Cheng-Der Wang
Abstract This work presents analytical solutions to compute the vertical stresses for a cross-anisotropic half-space due to various loading types by batter piles. The loading types are an embedded point load for an end-bearing pile, uniform skin friction, and linear variation of skin friction for a friction pile. The cross-anisotropic planes are parallel to the horizontal ground surface. The proposed solutions can be obtained by utilizing Wang and Liao's solutions for a horizontal and vertical point load acting in the interior of a cross-anisotropic medium. The derived cross-anisotropic solutions using a limiting approach are in perfect agreement with the isotropic solutions of Ramiah and Chickanagappa with the consideration of pile inclination. Additionally, the present solutions are identical to the cross-anisotropic solutions by Wang for the batter angle equals to 0. The influential factors in yielded solutions include the type and degree of geomaterial anisotropy, pile inclination, and distinct loading types. An example is illustrated to clarify the effect of aforementioned factors on the vertical stresses. The parametric results reveal that the stresses considering the geomaterial anisotropy and pile batter differ from those of previous isotropic and cross-anisotropic solutions. Hence, it is imperative to take the pile inclination into account when piles are required to transmit both the axial and lateral loads in the cross-anisotropic media. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Surface displacements due to batter piles driven in cross-anisotropic media

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2008
Cheng-Der Wang
Abstract This article derives the closed-form solutions for estimating the vertical surface displacements of cross-anisotropic media due to various loading types of batter piles. The loading types include an embedded point load for an end-bearing pile, uniform skin friction, and linear variation of skin friction for a friction pile. The planes of cross-anisotropy are assumed to be parallel to the horizontal ground surface. The proposed solutions are never mentioned in literature and can be developed from Wang and Liao's solutions for a horizontal and vertical point load embedded in the cross-anisotropic half-space. The present solutions are identical with Wang's solutions when batter angle equals to 0°. In addition, the solutions indicate that the surface displacements in cross-anisotropic media are influenced by the type and degree of material anisotropy, angle of inclination, and loading types. An illustrative example is given at the end of this article to investigate the effect of the type and degree of soil anisotropy (E/E,, G,/E,, and ,/,,), pile inclination (,), and different loading types (a point load, a uniform skin friction, and a linear variation of skin friction) on vertical surface displacements. Results show that the displacements accounted for pile batter are quite different from those estimated from plumb piles, both driven in cross-anisotropic media. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Stresses due to vertical subsurface loading for an inhomogeneous cross-anisotropic half-space

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2004
Cheng-Der Wang
Abstract In this article, we present the solutions for the stresses induced by four different loads associated with an axially loaded pile in a continuously inhomogeneous cross-anisotropic half-space. The planes of cross-anisotropy are parallel to the horizontal surface of the half-space, and the Young's and shear moduli are assumed to vary exponentially with depth. The four loading types are: an embedded point load for an end-bearing pile, uniform skin friction, linear variation of skin friction, and non-linear parabolic variation of skin friction for a friction pile. The solutions for the stresses due to the pile load are expressed in terms of the Hankel integral and are obtained from the point load solutions of the same inhomogeneous cross-anisotropic half-space which were derived recently by the authors (Int. J. Rock Mech. Min. Sci. 2003; 40(5):667,685). A numerical procedure is proposed to carry out the integral. For the special case of homogeneous isotropic and cross-anisotropic half-space, the stresses predicted by the numerical procedure agree well with the solutions of Geddes and Wang (Geotechnique 1966; 16(3):231,255; Soils Found. 2003; 43(5):41,52). An illustrative example is also given to investigate the effect of soil inhomogeneity, the type and degree of soil anisotropy, and the four different loading types on the vertical normal stress. The presented solutions are more realistic in simulating the actual stratum of loading problem in many areas of engineering practice. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A low-order, hexahedral finite element for modelling shells,

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 7 2004
Samuel W. Key
Abstract A thin, eight-node, tri-linear displacement, hexahedral finite element is the starting point for the derivation of a constant membrane stress resultant, constant bending stress resultant shell finite element. The derivation begins by introducing a Taylor series expansion for the stress distribution in the isoparametric co-ordinates of the element. The effect of the Taylor series expansion for the stress distribution is to explicitly identify those strain modes of the element that are conjugate to the mean or average stress and the linear variation in stress. The constant membrane stress resultants are identified with the mean stress components, and the constant bending stress resultants are identified with the linear variation in stress through the thickness along with in-plane linear variations of selected components of the transverse shear stress. Further, a plane-stress constitutive assumption is introduced, and an explicit treatment of the finite element's thickness is introduced. A number of elastic simulations show the useful results that can be obtained (tip-loaded twisted beam, point-loaded hemisphere, point-loaded sphere, tip-loaded Raasch hook, and a beam bent into a ring). All of the gradient/divergence operators are evaluated in closed form providing unequivocal evaluations of membrane and bending strain rates along with the appropriate divergence calculations involving the membrane stress and bending stress resultants. The fact that a hexahedral shell finite element has two distinct surfaces aids sliding interface algorithms when a shell folds back on itself when subjected to large deformations. Published in 2004 by John Wiley & Sons, Ltd. [source]


Novel polyurethane elastomer continuous carbon fiber composites: Preparation and characterization

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007
Borda
Abstract Preparation and characterization of novel polyurethane (PUR),carbon fiber (CF) composites are reported. The reinforcement of PUR elastomers was achieved using unidirectional continuous CFs with different coatings (uncoated and epoxy and polyester resin coatings) by applying molding for the preparation of PUR-CF composites. Considerable reinforcement of PUR was attained even at relatively low CF content, e.g., maximum stress and Young's modulus of PUR-CF composite at CF content 3% (m/m) were found to be 3,5 and 4,10 times higher than those of the PUR-matrix, respectively. In addition, a linear relationship between the Young's modulus and the CF content was found as well as linear variation of maximum stress with the CF content was also observed. The adhesion of CF to the PUR-matrix was strong in each case as concluded from the strain,stress and the scanning electron microscopy (SEM) investigations. However, the extent of reinforcement of PUR at a given CF content was found to depend greatly on the coatings of CF, and increased in the following order: epoxy resin < polyester resin < uncoated. The effect of the coating of CF on the reinforcement of PUR is also discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 287,292, 2007 [source]


Spin states in polynuclear clusters: The [Fe2O2] core of the methane monooxygenase active site

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 12 2006
Carmen Herrmann
Abstract The ability to provide a correct description of different spin states of mono- and polynuclear transition metal complexes is essential for a detailed investigation of reactions that are catalyzed by such complexes. We study the energetics of different total and local spin states of a dinuclear oxygen-bridged iron(IV) model for the intermediate Q of the hydroxylase component of methane monooxygenase by means of spin-unrestricted Kohn,Sham density functional theory. Because it is known that the spin state total energies depend systematically on the density functional, and that this dependence is intimately connected to the exact exchange admixture of present-day hybdrid functionals, we compare total energies, local and total spin values, and Heisenberg coupling constants calculated with the established functionals BP86 and B3LYP as well as with a modified B3LYP version with an exact exchange admixture ranging from 0 to 24%. It is found that exact exchange enhances local spin polarization. As the exact exchange admixture increases, the high-spin state is energetically favored, although the Broken-Symmetry state always is the ground state. Instead of the strict linear variation of the energy splittings observed for mononuclear complexes, a slightly nonlinear dependence is found. The Heisenberg coupling constants JFe1Fe2,evaluated according to three different proposals from the literature,are found to vary from ,129 to ,494cm,1 accordingly. The experimental finding that intermediate Q has an antiferromagnetic ground state is thus confirmed. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1223,1239, 2006 [source]


Effect of chemical heterogeneity on adsorbed solute dispersion at column scale

AICHE JOURNAL, Issue 4 2008
Safia Semra
Abstract Chemical heterogeneity seems to be responsible for spreading increase of adsorbed solute breakthrough curves. Adsorption in fixed beds assumes chemically homogeneous media. However, this is not always true, in particular when natural sands or mixed adsorbent filters are used in drinking water purification. Neglecting eventual effect of chemical heterogeneity may engender false modeling bases. So, considering homogeneous grain size distribution, the effect of chemical heterogeneity on global dispersion in porous media has been investigated experimentally in this article at column scale. Breakthroughs of adsorbed solute showed a visible effect of chemical heterogeneity on solute global dispersion increasing. The more heterogeneous the medium, the more spread the adsorbed solute breakthrough. Reduced variance showed a linear variation with the chemical heterogeneity scale at closely constant media global capacity. A pseudo-homogeneous model has been developed to simulate experimental data by increasing dispersion parameter. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source]


Changes in spectral features with varying mole fractions of anisaldehyde in binary mixtures

JOURNAL OF RAMAN SPECTROSCOPY, Issue 3 2007
A. Anis Fathima
Abstract Raman and IR spectra of neat anisaldehyde (4-methoxybenzaldehyde (4MeOBz)) and its binary mixtures (in polar and nonpolar solvents) with varying mole fraction of 4MeOBz were investigated. The concentration dependence of the wavenumber position and line width (full width at half maximum, FWHM) was analyzed to study the interaction of the solute vibrational modes with the microscopic solvent environment. The wavenumbers of Raman modes of 4MeOBz, namely, the carbonyl stretching, aldehydic , (CH) and ring-breathing modes, showed a linear variation in the peak position for varying concentrations of 4MeOBz in the different solvents. The dependence of Raman line width with concentration of 4MeOBz of these modes was also taken into account. The solute,solvent interaction is stronger in 2-propanol and acetonitrile because of the formation of hydrogen bonds between them, whereas in benzene the interaction is too weak to affect the Raman modes. The modes, , (CO) in 2-propanol and aldehydic , (CH) in acetonitrile, gave a Gaussian-type line width variation, which was explained by the concentration fluctuation model, and the linear variation of the line widths was also interpreted by solute,solvent interactions. IR spectra were taken for these binary mixtures, which also give further support to these data. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Effect of composition on the optical properties of the quaternary CuxAg1,xInTe2 thin films

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2003
E. A. El-Sayad
Abstract Thin films of CuxAg1,xInTe2 solid solutions (x = 0.25, 0.50 and 0.75) were deposited by thermal evaporation of prereacted materials on glass substrates. X-ray diffraction (XRD) studies has revealed that the as-deposited and thermally annealed films are polycrystalline with single-phase of a tetragonal chalcopyrite structure as that of bulk material with (112) predominant reflecting plane. The films compositions were confirmed by using energy dispersive analysis of X-rays (EDAX). The refractive index, n, and the extinction coefficient, k, of the annealed films with different compositions were determined in the spectral range, 400,2500 nm. Three characteristic energy gaps have been determined from the analysis of optical absorption spectrum for each composition. The three energy gaps are attributed to the optical transitions from the valence sub-bands to the conduction band minimum. Besides, a fourth energy gap has also been obtained for each composition, which may be attributed to the transition from the copper 3d-level to the conduction band minimum. However, the band gaps showed linear variation with the value of x. [source]


Structural and magnetic properties in the ruthenate Bi2.67Pr0.33Ru3O11

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 9 2006
S. Zouari
Abstract An unreported praseodymium substituted phase of the Bi-Ru-O system with formula Bi2.67Pr0.33Ru3O11was prepared. Its crystal structure and magnetic properties were investigated. Pr substituted occurs only on one of the two Bi sites. The magnetism of the compound is dominated by a Pr3+ contribution, that appears to interact antiferromagnetically. A non linear variation of the reciprocal magnetic susceptibility is observed that appears to account for crystal electric field interactions on the Pr3+ ions. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


A low-order, hexahedral finite element for modelling shells,

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 7 2004
Samuel W. Key
Abstract A thin, eight-node, tri-linear displacement, hexahedral finite element is the starting point for the derivation of a constant membrane stress resultant, constant bending stress resultant shell finite element. The derivation begins by introducing a Taylor series expansion for the stress distribution in the isoparametric co-ordinates of the element. The effect of the Taylor series expansion for the stress distribution is to explicitly identify those strain modes of the element that are conjugate to the mean or average stress and the linear variation in stress. The constant membrane stress resultants are identified with the mean stress components, and the constant bending stress resultants are identified with the linear variation in stress through the thickness along with in-plane linear variations of selected components of the transverse shear stress. Further, a plane-stress constitutive assumption is introduced, and an explicit treatment of the finite element's thickness is introduced. A number of elastic simulations show the useful results that can be obtained (tip-loaded twisted beam, point-loaded hemisphere, point-loaded sphere, tip-loaded Raasch hook, and a beam bent into a ring). All of the gradient/divergence operators are evaluated in closed form providing unequivocal evaluations of membrane and bending strain rates along with the appropriate divergence calculations involving the membrane stress and bending stress resultants. The fact that a hexahedral shell finite element has two distinct surfaces aids sliding interface algorithms when a shell folds back on itself when subjected to large deformations. Published in 2004 by John Wiley & Sons, Ltd. [source]