Linear Tetrahedral Elements (linear + tetrahedral_element)

Distribution by Scientific Domains


Selected Abstracts


Non-locking tetrahedral finite element for surgical simulation

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 7 2009
Grand Roman Joldes
Abstract To obtain a very fast solution for finite element models used in surgical simulations, low-order elements, such as the linear tetrahedron or the linear under-integrated hexahedron, must be used. Automatic hexahedral mesh generation for complex geometries remains a challenging problem, and therefore tetrahedral or mixed meshes are often necessary. Unfortunately, the standard formulation of the linear tetrahedral element exhibits volumetric locking in case of almost incompressible materials. In this paper, we extend the average nodal pressure (ANP) tetrahedral element proposed by Bonet and Burton for a better handling of multiple material interfaces. The new formulation can handle multiple materials in a uniform way with better accuracy, while requiring only a small additional computation effort. We discuss some implementation issues and show how easy an existing Total Lagrangian Explicit Dynamics algorithm can be modified in order to support the new element formulation. The performance evaluation of the new element shows the clear improvement in reaction forces and displacements predictions compared with the ANP element in case of models consisting of multiple materials. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A parallel implicit/explicit hybrid time domain method for computational electromagnetics

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 8 2009
Z. Q. Xie
Abstract The numerical solution of Maxwell's curl equations in the time domain is achieved by combining an unstructured mesh finite element algorithm with a cartesian finite difference method. The practical problem area selected to illustrate the application of the approach is the simulation of three-dimensional electromagnetic wave scattering. The scattering obstacle and the free space region immediately adjacent to it are discretized using an unstructured mesh of linear tetrahedral elements. The remainder of the computational domain is filled with a regular cartesian mesh. These two meshes are overlapped to create a hybrid mesh for the numerical solution. On the cartesian mesh, an explicit finite difference method is adopted and an implicit/explicit finite element formulation is employed on the unstructured mesh. This approach ensures that computational efficiency is maintained if, for any reason, the generated unstructured mesh contains elements of a size much smaller than that required for accurate wave propagation. A perfectly matched layer is added at the artificial far field boundary, created by the truncation of the physical domain prior to the numerical solution. The complete solution approach is parallelized, to enable large-scale simulations to be effectively performed. Examples are included to demonstrate the numerical performance that can be achieved. Copyright © 2009 John Wiley & Sons, Ltd. [source]


A uniform nodal strain tetrahedron with isochoric stabilization

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 4 2009
M. W. Gee
Abstract A stabilized node-based uniform strain tetrahedral element is presented and analyzed for finite deformation elasticity. The element is based on linear interpolation of a classical displacement-based tetrahedral element formulation but applies nodal averaging of the deformation gradient to improve mechanical behavior, especially in the regime of near-incompressibility where classical linear tetrahedral elements perform very poorly. This uniform strain approach adopted here exhibits spurious modes as has been previously reported in the literature. We present a new type of stabilization exploiting the circumstance that the instability in the formulation is related to the isochoric strain energy contribution only and we therefore present a stabilization based on an isochoric,volumetric splitting of the stress tensor. We demonstrate that by stabilizing the isochoric energy contributions only, reintroduction of volumetric locking through the stabilization can be avoided. The isochoric,volumetric splitting can be applied for all types of materials with only minor restrictions and leads to a formulation that demonstrates impressive performance in examples provided. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Localized remeshing techniques for three-dimensional metal forming simulations with linear tetrahedral elements

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2006
Il-Heon Son
Abstract The localized remeshing technique for three-dimensional metal forming simulations is proposed based on a mixed finite element formulation with linear tetrahedral elements in the present study. The numerical algorithm to generate linear tetrahedral elements is developed for finite element analyses using the advancing front technique with local optimization method which keeps the advancing fronts smooth. The surface mesh generation using mesh manipulations of the boundary elements of the old mesh system was made to improve mesh quality of the boundary surface elements, resulting in reduction of volume change in forming simulations. The mesh quality generated was compared with that obtained from the commercial CAD package for the complex geometry like lumbar. The simulation results of backward extrusion and bevel gear and spider forgings indicate that the currently developed simulation technique with the localized remeshing can be used effectively to simulate the three-dimensional forming processes with a reduced computation time. Copyright © 2006 John Wiley & Sons, Ltd. [source]