Home About us Contact | |||
Linear Shape Functions (linear + shape_function)
Selected AbstractsA dual mortar approach for 3D finite deformation contact with consistent linearizationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2010Alexander Popp Abstract In this paper, an approach for three-dimensional frictionless contact based on a dual mortar formulation and using a primal,dual active set strategy for direct constraint enforcement is presented. We focus on linear shape functions, but briefly address higher order interpolation as well. The study builds on previous work by the authors for two-dimensional problems. First and foremost, the ideas of a consistently linearized dual mortar scheme and of an interpretation of the active set search as a semi-smooth Newton method are extended to the 3D case. This allows for solving all types of nonlinearities (i.e. geometrical, material and contact) within one single Newton scheme. Owing to the dual Lagrange multiplier approach employed, this advantage is not accompanied by an undesirable increase in system size as the Lagrange multipliers can be condensed from the global system of equations. Moreover, it is pointed out that the presented method does not make use of any regularization of contact constraints. Numerical examples illustrate the efficiency of our method and the high quality of results in 3D finite deformation contact analysis. Copyright © 2010 John Wiley & Sons, Ltd. [source] Explicit expressions for 3D boundary integrals in potential theory,INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 1 2009S. Nintcheu Fata Abstract On employing isoparametric, piecewise linear shape functions over a flat triangular domain, exact expressions are derived for all surface potentials involved in the numerical solution of three-dimensional singular and hyper-singular boundary integral equations of potential theory. These formulae, which are valid for an arbitrary source point in space, are represented as analytic expressions over the edges of the integration triangle. They can be used to solve integral equations defined on polygonal boundaries via the collocation method or may be utilized as analytic expressions for the inner integrals in the Galerkin technique. In addition, the constant element approximation can be directly obtained with no extra effort. Sample problems solved by the collocation boundary element method for the Laplace equation are included to validate the proposed formulae. Published in 2008 by John Wiley & Sons, Ltd. [source] On algebraic multigrid methods derived from partition of unity nodal prolongatorsNUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, Issue 2-3 2006Tim Boonen Abstract This paper is concerned with algebraic multigrid for finite element discretizations of the divgrad, curlcurl and graddiv equations on tetrahedral meshes with piecewise linear shape functions. First, an edge, face and volume prolongator are derived from an arbitrary partition of unity nodal prolongator for a tetrahedral fine mesh, using the formulas for edge, face and volume elements. This procedure can be repeated recursively. The implied coarse topology and the normalization of the prolongators are analysed. It is proved that the range spaces of the nodal prolongator and of the derived edge, face and volume prolongators form a discrete de Rham complex if these prolongators have full rank. It is shown that on simplicial meshes, the constructed edge prolongator is a generalization of the Reitzinger,Schöberl prolongator. The derived edge and face prolongators are applied in an algebraic multigrid method for the curlcurl and graddiv equations, and numerical results are presented. Copyright © 2006 John Wiley & Sons, Ltd. [source] A Finite Element Approach for the Simulation of Quasi-Brittle FracturePROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2005Oliver Hilgert In the context of a strong discontinuity approach, we propose a finite element formulation with an embedded displacement discontinuity. The basic assumption of the proposed approach is the additive split of the total displacement field in a continuous and a discontinuous part. An arbitrary crack splits the linear triangular finite element into two parts, namely a triangular and a quadrilateral part. The discontinuous part of the displacement field in the quadrilateral portion is approximated using linear shape functions. For these purposes, the quadrilateral portion is divided into two triangular parts which is in this way similar to the approach proposed in [5]. In contrast, the discretisation is different compared to formulations proposed in [1] and [3], where the discontinuous part of the displacement field is approximated using bilinear shape functions. The basic theory of the underlying finite element formulation and a cohesive interface model to simulate brittle fracture are presented. By means of representative numerical examples differences and similarities of the present formulation and the formulations proposed in [1] and [3] are highlighted. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |