Home About us Contact | |||
Linear Matrix Inequality Approach (linear + matrix_inequality_approach)
Selected AbstractsAn application of robust control technique to manufacturing systems with uncertain processing timeOPTIMAL CONTROL APPLICATIONS AND METHODS, Issue 6 2000E. K. Boukas Abstract This paper studies the inventory control problem for a production system with uncertain processing time and delay in control. First, the stabilization of the delayed system is analysed. Then, a controller is designed such that a disturbance attenuation of the system is achieved. The problem of robust control of the system with parametric uncertainty is also investigated. Linear matrix inequality approach is employed to solve the above problems. A numerical example is given to show the potential of the proposed techniques. Copyright © 2000 John Wiley & Sons, Ltd. [source] Model predictive control for networked control systemsINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 9 2009Jing Wu Abstract This paper investigates the problem of model predictive control for a class of networked control systems. Both sensor-to-controller and controller-to-actuator delays are considered and described by Markovian chains. The resulting closed-loop systems are written as jump linear systems with two modes. The control scheme is characterized as a constrained delay-dependent optimization problem of the worst-case quadratic cost over an infinite horizon at each sampling instant. A linear matrix inequality approach for the controller synthesis is developed. It is shown that the proposed state feedback model predictive controller guarantees the stochastic stability of the closed-loop system. Copyright © 2008 John Wiley & Sons, Ltd. [source] LMI approach to reliable guaranteed cost control with multiple criteria constraints: The actuator faults caseINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 8 2009Dengfeng Zhang Abstract Based on the multi-objective optimization strategy and linear matrix inequality approach, the problem of reliable guaranteed cost control with multiple criteria constraints is investigated for a class of uncertain discrete-time systems subject to actuator faults. A fault model in actuators, which considers outage or partial degradation in independent actuators, is adopted. The quadratic stability is proved to be independent of the disturbance and the upper bound of a quadratic cost index is improved. The reliable feedback controller is designed to minimize the upper bound of the quadratic cost index, place all the closed-loop poles in a specified disk, constrain the H, norm level of the disturbance attenuation into a given range and guarantee the magnitudes of control inputs less than the given bound, as well. Thus, the resulting closed-loop system can provide satisfactory stability, transient behavior, disturbance rejection level and optimized upper bound of the quadratic cost performance despite possible actuator faults. Copyright © 2008 John Wiley & Sons, Ltd. [source] Observer-based non-fragile control against measurement disturbances and controller perturbations for discrete systems with state delay ,ASIAN JOURNAL OF CONTROL, Issue 3 2009Xiaosheng Fang Abstract This paper investigates the observer-based non-fragile control problem for a class of discrete time delay systems with measurement disturbances and controller perturbations. A simultaneous state and disturbance estimation technique is developed by designing a state observer for a descriptor system obtained from the original system. Based on this observer, the design method of a non-fragile controller is then formulated and the controller design problem is transformed to a convex optimization problem, which can be solved by a linear matrix inequality approach. In this design, the additive and multiplicative forms of uncertainties which perturb the gains of control and observer are both considered. The resultant non-fragile observer-based controller guarantees that the closed-loop system is asymptotically stable and can tolerate measurement disturbances and a certain degree of controller parameter perturbation. A numerical example is given to illustrate the effectiveness of the proposed design method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source] |