Home About us Contact | |||
Linear Low Density Polyethylene (linear + low_density_polyethylene)
Selected AbstractsDevelopment of a liquid extraction method and comparison with dynamic thermal stripping,thermal desorption (DTS,TD) method: sorption of D -limonene by flexible packaging filmsPACKAGING TECHNOLOGY AND SCIENCE, Issue 2 2004Cengiz Caner Abstract The sorption of D -limonene into polymeric structures in contact with food simulant liquids (ethanol and acetic acid solutions) was determined using two methods, liquid extraction (LE) and dynamic thermal stripping,thermal desorption (DTS,TD). The polymeric films studied were PP (polypropylene), PE/nylon/EVOH/PE (polyethylene/nylon/ethylene vinyl alcohol/polyethylene) and metPET/VA EVA/LLDPE (metallized polyethylene terephthalate/ethylenevinyl acetate/linear low density polyethylene). Our assessment showed that both LE and DTS,TD techniques are valuable procedures. LE was evaluated as an alternative method with the advantage of being a simplified process. It was possible to measure the amount of D -limonene in the polymers using both methods. Correlation between methods was >82% and for the single layer polymers >92%. The respective sorption values obtained by the two methods were also found to be in good agreement. LE is simple and rapid to perform and, in general, gives slightly lower results compared to DTS,TS sorption tests conducted with adequate food simulants. The results indicate that the liquid extraction method is an excellent technique for the determination of sorbate concentration in polymeric structures. Copyright © 2004 John Wiley & Sons, Ltd. [source] Morphology and electrical properties of carbon black filled LLDPE/EMA compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007Ping Zhou Abstract The morphology and electrical properties of linear low density polyethylene (LLDPE)/poly (ethylene-methyl arylate) (EMA) blends filled with carbon black (CB) are investigated in this work. Comparing to LLDPE/CB composite, the higher percolation threshold of EMA/CB composite is attributed to the good interaction between EMA and CB. However, carbon black is found to locate preferentially in the LLDPE phase of LLDPE/EMA immiscible blends from the characterization of SEM and electrical properties, which greatly decreases the percolation threshold of the composites. The viscosity of the two polymers is the key factor to determine the distribution of CB instead of interfacial energy in this system. This suggests a method to control the distribution of CB in the immiscible blends by choosing the viscosity ratio of polymer blend. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 487,492, 2007 [source] Technology and Stress Relaxation of Biaxially Oriented Polyolefin Shrink FilmsMACROMOLECULAR SYMPOSIA, Issue 1 2004Arthur Bobovitch Abstract In the present study the influence of the heating rate on the stability of the double bubble technological process was investigated. It was shown that increasing the heating rate decreases the stability of the process and causes the lower elongation of the films produced. The morphological transformations of linear low density polyethylene (LLDPE) film were explained using X-ray and transmission electrom microscopy (TEM) methods. The stress relaxation behavior of co-extruded LLDPE/ethylene-vinyl-acetate (EVA) film was studied using the relaxation time spectrum approach. The influence of vinyl-acetate (VA) content in EVA copolymers on the relaxation time spectrum was observed. [source] Dynamic viscoelasticity of hybrid kevlar and glass fiber reinforced LLDPE in the molten statePOLYMER COMPOSITES, Issue 4 2002S. A. R. Hashmi Kevlar and glass fibers were used to reinforce linear low density polyethylene (LLDPE), and composite sheets of 0.8, 1.5 and 2.5 mm thicknesses were obtained by using a compression molding technique. Dynamic viscoelastic properties of non-hybrid and hybrid composites of various compositions at 200°C are evaluated. Storage modulus (G,) and loss modulus (G,) increase with angular frequency (,) and reinforcement. Replacement of glass fiber by Kevlar at constant loading of fibers in LLDPE increases the value of G,, G, and ,,. The fractured surface of composite shows the gradient orientation of fibers particularly in 2.5 mm thick sheet. Top and bottom layers show relatively two-dimensional orientation as compared to the middle layer, which shows random orientation. The orientation of fibers decreases G, and ,, of Kevlar fiber and hybrid fiber hybrid fiber reinforced LLDPE composites. The effect of change in distance between parallel plate of rheometer (change in strain amplitude) on dynamic rheological properties is studied and reported here. [source] Dynamic mechanical behavior of LCP fiber/glass fiber,reinforced LLDPE compositesPOLYMER COMPOSITES, Issue 2 2001S. A. R. Hashmi Liquid crystalline polymer (LCP) fibers and glass fibers have been used to rein force linear low density polyethylene (LLDPE) by using an elastic melt extruder and the compression molding technique. The impact behavior of hybrid composites of different composition is compared and is explained on the basis of the volume frac tion of the fibers. Addition of glass fibers decreases the Izod impact strength LLDPE. The impact strength of the composites increases when glass fibers are placed by LCP fibers. Dynamic mechanical , and , relaxations are studied and effect of variation of fiber composition on these relaxations is reported in the tem perature range from ,50 to 150°C at 1 Hz frequency, a relaxation shifts toward higher temperatures with addition of fibers in LLDPE. Addition of fibers increases the storage modulus of LLDPE. [source] Effect of intercalating agents on clay dispersion and thermal properties in polyethylene/montmorillonite nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 8 2008Karen Stoeffler Alkyl pyridinium, 1-vinyl alkyl imidazolium, 1,3-dialkyl imidazolium, and tetraalkyl phosphonium bromides were successfully used as intercalants for the preparation of highly thermally stable organophilic montmorillonites. Nanocomposites of linear low density polyethylene (LLDPE) and linear low density polyethylene grafted with maleic anhydride (LLDPE/LLDPE- g -MAH) were prepared from those organoclays. The micro- and nano-dispersions were analyzed through X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM): intercalation and/or partial exfoliation were found to occur only for formulations based on organoclays having an initial basal distance higher than 20 Å, suggesting the existence of a critical interfoliar distance for the delamination of silicate layers in a noninteracting polymer matrix. The properties of the nanocomposites were analyzed through differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and oscillatory rheometry. The dynamic crystallization of LLDPE was not significantly affected by the presence of clay. TGA in oxidative atmosphere proved to be very sensitive to the dispersion state of the organoclay: the thermal stability was drastically enhanced for intercalated and partially exfoliated formulations. However, the inherent thermal stability of the organoclay did not appear to influence significantly the overall thermal stability of the composite in the range of temperatures investigated (160,230°C). POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers. [source] Ultrasonic improvement of rheological and processing behaviour of LLDPE during extrusionPOLYMER INTERNATIONAL, Issue 1 2003Shaoyun Guo Abstract The effects of ultrasonic oscillations on die pressure, productivity of extrusion, melt viscosity and melt fracture of linear low density polyethylene (LLDPE) as well as their mechanism of action were studied in a special ultrasonic oscillation extrusion system developed in our Laboratory. The experimental results showed that, in the presence of ultrasonic oscillations, the melt fracture or surface distortion of LLDPE extrudate is inhibited or disappears. The surface appearance of the LLDPE extrudate was greatly improved. The productivity of LLDPE extrudate was increased in the presence of ultrasonic oscillations. The die pressure, melt viscosity and flow activation energy of LLDPE decreased with the rise in ultrasonic intensity. The shear sensitivity of LLDPE melt viscosity decreased due to the increase of its power law index in the presence of ultrasonic oscillations. Inducing ultrasonic oscillations into LLDPE melt greatly improved its processability. A possible mechanism for the improved processibility is proposed. © 2003 Society of Chemical Industry [source] The Characteristics of Polyethylene Film for Stretch and Cling Film ApplicationsASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1-2 2004C.M. Small Part I. A range of polyethylene films were prepared from metallocene linear low density polyethylene (m-LLDPE), linear low density polyethylene (LLDPE) and ultra low density polyethylene (ULDPE) resins, containing 0 and 8% polyisobutylene (PIB). FTIR, DSC and mechanical analysis techniques were used to investigate the effect of co-monomer type, density and melt flow index (MFI) on the mechanical performance, orientation and crystallinity of these films. The study established that co-monomer type and MFI were the greatest factors influencing mechanical performance and crystallinity. Crystallinity was found to be the most influential factor governing PIB migration in these films and this in turn was related to polymer type, density and MFI, High MFI, octene co-monomer films exhibited the highest orientation, tear resistance and tack strength and would therefore be suitable for stretch film applications. Ultra low-density polymers gave relatively low tack strength and poor overall mechanical performance. Part II. A range of ethyl vinyl acetate (EVA)/m-LLDPE/EVA co-extruded films was manufactured, with vinyl acetate (VA) co-monomer content of 6, 12 and 18% and PIB content from 0,20%. The films were aged at 45d,C for up to 28 days, to enable tack (cling) development. The results show that film tack strength improved significantly with ageing. Increased VA concentration in the surface layer also showed significant improvement in film tack strength. The film tensile strength, elongation and tear properties in both machine direction (MD) and transverse direction (TD) were not significantly affected by increase in PIB concentration. However, increased VA content showed slight improvement in MD mechanical performance of the films, TD properties were relatively unaffected. Films with 12 to 18% VA in the surface layers produced high surface tack film and the mechanical performance of these films were comparable to mono-layer polyethylenes. These films are suitable for stretch wrap applications and have reduced the overall concentrations of tack additives, though high VA films were more difficult to process. [source] The Effect of Orientation on Extrusion Cast Metallocene Polyethylenes and the Role of Processing Conditions in the Die Swell of Metallocene and Conventional PolyethylenesASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1-2 2004B.G. Millar Cast films were prepared from a range of metallocene polyethylenes (mPEs) of varied co-monomer types (hexene, octene) using a Killion single-screw extruder, using different haul off speeds (8,4 m/min) and die gaps (700,250 m,m). Samples with greater orientation in one direction had increased tensile strength and shrinkage in that direction. DSC analysis showed crystallinity to decrease with decreasing haul of speed. Extrusion of mPEs and conventional linear low density polyethylenes (LLDPEs) by single capillary rheology showed that die swell increased with increasing extrusion rate and decreasing melt temperature. Increased die swell was found for the broader molecular weight distribution (M.W.D.) LLDPEs and in the higher molecular weight resins. Furthermore, long chain branching was found to increase die swell. [source] |