Linear Dependence (linear + dependence)

Distribution by Scientific Domains


Selected Abstracts


Dispersion of Dust Acoustic Modes and Perturbations of Plasma Flux Balance

CONTRIBUTIONS TO PLASMA PHYSICS, Issue 3 2007
V. Tsytovich
Abstract Previous considerations of dust acoustic waves is demonstrated to be inconsistent - the required equilibrium state for perturbations was not defined since balance of plasma fluxes was neglecting. The self-consistent treatment shows that plasma flux perturbations are accompanying any collective waves propagating in dusty plasmas and can play an important role in wave dispersion, wave damping and can create instabilities. This is illustrated by the derivation of dispersion relation for dust acoustic modes taking into account the plasma flux balances and plasma flux perturbations by waves. The result of this approach shows that the dust acoustic waves with linear dependence of wave frequency on the wave number exist only in restricted range of the wave numbers. Only for wave numbers larger than some critical wave number for low frequency modes the frequency can be have approximately a linear dependence on wave number and can be called as dust acoustic wave but the phase velocity of these waves is different from that which can be obtained neglecting the flux balance and depends on grain charge variations which are determined by the balance of fluxes. The presence of plasma fluxes previously neglected is the main typical feature of dusty plasmas. The dispersion relation in the range of small wave numbers is found to be mainly determined by the change of the plasma fluxes and is quite different from that of dust acoustic type, namely it is found to have the same form as the well known dispersion relation for the gravitational instability. This result proves in general way the existence of the collective grain attractions of negatively charged grains for for large distances between them and for any source of ionization. The attraction of grains found from dispersion relation of the dust acoustic branch coincides with that found previously for pair grain interactions using some models for the ionization source. For the existing experiments the effective Jeans length for such attraction is estimated to be about 8 , 10 times larger than the ion Debye length and the effective gravitational constant for the grain attraction is estimated to be several orders of magnitude larger than the usual gravitational constant. The grain attraction at large inter-grain distances described by the gravitationlike grain instability is considered as the simplest explanation for observed dust cloud clustering, formation of dust structures including the plasma crystals. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Preparation and investigation of (CuInSe2)x(2ZnSe)1-x and (CuInTe2)x(2ZnTe)1-x solid solution crystals

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 4 2004
I. V. Bodnar
Abstract The (CuInSe2)x(2ZnSe)1-x and (CuInTe2)x(2ZnTe)1-x solid solution crystals prepared by Bridgman method and chemical vapor transport have been studied. The nature of the crystalline phases, the local structure homogeneity and composition of these materials have been investigated by X-ray diffraction (XRD) and Electron Probe Microanalysis (EPMA) methods. The analysis revealed the presence of chalcopyrite-sphalerite phase transition between 0.6 , X , 0.7. Lattice constants, value of , position parameter and bond length between atoms were also calculated. It was found that the lattice parameters exhibit a linear dependence versus composition. The transmission spectra of solid solution crystals in the region of the main absorption edge were studied. It was established that the optical band gap of these materials changes non-linearly with the X composition. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The Influence of the Cathodic Pretreatment on the Electrochemical Detection of Dopamine by Poly(1-aminoanthracene) Modified Electrode

ELECTROANALYSIS, Issue 19 2010
Estela de Pieri Troiani
Abstract In this study we demonstrated the influence of the cathodic pretreatment of poly(1-aminoanthracene) (PAA) electropolymerized on a platinum electrode for determination of dopamine (DA). The DA electrochemical response was obtained after a cathodic pretreatment of the PAA electrode which consisted of applying a potential of ,0.7,V (vs. Ag/AgCl) for 3,s before each measurement. The pretreatment of the electrode changed the PAA electrocatalytic properties so that the electrode began to present electrochemical response to DA without interference of ascorbic acid (AA). The anodic peak currents determined by differential pulse voltammetry using pretreated PAA showed a linear dependence on the DA concentration from 0.56 to 100,µM with a detection limit of 0.13,µM and a correlation coefficient of 0.9986. The electrode exhibits a relative standard deviation of 1.2,% for ten successive measurements of a 0.5,mM DA solution. The analysis by scanning electron microscopy and atomic force microscopy show a homogeneous and nanostructured film with globular structures with diameter of about 20,nm. The analytical results obtained for DA determination at a pretreated PAA electrode in pharmaceutical formulation sample were in good agreement with those obtained by a comparative procedure at a 95,% confidence level. PAA electrode after the pretreatment showed electrochemical responses to DA with excellent selectivity, sensitivity, and high stability without interference of AA. [source]


Radii of Redox Components from Absolute Redox Potentials Compared with Covalent and Aqueous Ionic Radii

ELECTROANALYSIS, Issue 9 2010
Raji Heyrovska
Abstract Aqueous standard potentials, referred to that of the SHE as zero, were recently shown to vary linearly with gaseous ionization potentials, with the absolute potential of SHE as the intercept. This enabled arriving at the absolute redox potentials of elements. Here, the distances between the oxidized and reduced forms in aqueous solutions have been evaluated. From the linear dependence of these distances on the covalent radii of atoms, the radii of the redox components have been obtained. The latter also vary linearly with the aqueous ionic radii estimated earlier from ion-water distances, and indicate the presence of aqueous molecular anions. [source]


Electrochemical Investigation of Strontium,Metallothionein Interactions , Analysis of Serum and Urine of Patients with Osteoporosis

ELECTROANALYSIS, Issue 3-5 2009
Ivo Fabrik
Abstract The main aim of this paper is to study interaction between strontium and metallothionein (MT), and to determine changes in strontium and thiols (MT, reduced glutathione, cysteine, and homocysteine) level in plasma, serum, and urine samples of patients treated with strontium ranelate (SrR). To investigate the interactions between MT and strontium(II) ions, adsorptive transfer stripping technique coupled with differential pulse voltammetry (DPV) the Brdicka reaction was employed. Besides standard Brdicka signals (Co, RS2Co, Cat1, Cat2, Cat3), we observed new signal related to Sr-MT interaction. Further we investigated the effect of various time of interaction, concentration of strontium(II) ions and temperature of supporting electrolyte on Brdicka signals. Optimal time of interaction was 240,s. Under temperature of supporting electrolyte 20,°C, we measured linear dependence of Cat3 signal height on strontium(II) ions concentration. After that we have investigated the possibility of strontium-MT interactions, we were interested in strontium, MT and low molecular mass thiols levels in serum and urine of patients treated with strontium(II) ions to cure osteoporosis. Strontium concentration determined by atomic absorption spectrometry was 55±5,,g/L before and 10,500±1,400,,g/L at the 30th day of SrR administration. Levels of metallothionein in serum ranged from 0.1 to 6.4,,M. Correlation between serum strontium concentration and MT level was determined and correlation coefficient was R=0.93. [source]


Electrocatalysis and Voltammetric Determination of Dopamine at a Calix[4]arene Crown-4 Ether Modified Glassy Carbon Electrode

ELECTROANALYSIS, Issue 4 2007
Guo-Song Lai
Abstract A sensitive and selective electrochemical method for the determination of dopamine (DA) was developed using a calix[4]arene crown-4 ether (CACE) film modified glassy carbon electrode (GCE). The modified electrode exhibited good electrocatalytic activity for electrochemical oxidation of DA in the pH,6.00 Britton,Robinson buffer solution, and ascorbic acid (AA) did not interfere with it. The diffusion coefficient (D=2.7×10,5,cm2 s,1), and the kinetic parameter such as the electron transfer coefficient (,=0.54) of DA at the surface of CACE were determined using electrochemical approaches. The catalytic oxidation peak currents showed a linear dependence on the DA concentration and a linear analytical curve was obtained in the range of 2.0×10,5,1.0×10,3,M of DA with a correlation coefficient of 0.9990. The detection limit (S/N=3) was estimated to be 3.4×10,6,M. This method was also examined for the determination of DA in an injection sample. In addition, effects of possible interferences were investigated. The present work shows the potential of the proposed method for the fabrication of a modified electrode, as it can be effectively used for voltammetric detection of DA. [source]


Synthesis, Crystal Structure, and Magnetic Properties of Mn2(OH)2SO4: A Novel Layered Hydroxide

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2004
Mohsen Ben Salah
Abstract Mn2(OH)2SO4, obtained as pink prismatic crystals by the hydrothermal reaction of MnSO4·H2O and NaOH at 240 °C for 24 h, consists of layers of Mn hydroxide connected to each other through µ6 -sulfate ions. Each layer exhibits vacancies, and each vacant space is capped at the top and bottom by the sulfate groups. The compound is paramagnetic above 50 K (C = 4.36 emu K mol,1, µeff = 5.91 µB, , = ,100 K). Below 45 K, the magnetization increases slightly, indicating canted-antiferromagnetic (TNéel = 42±1 K) behavior consistent with the linear dependence of the magnetization as a function of the field at 2 K, which reaches only 0.4 µB at 50 kOe, and the lack of any imaginary component of the ac-susceptibilities (ac = alternating current). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


Human enamel dissolution in citric acid as a function of pH in the range 2.30,pH,6.30 , a nanoindentation study

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2003
Michele E. Barbour
The objective of this study was to investigate the dissolution of human enamel in citric acid solutions over a wide range of pH. The in vitro conditions are considered to be relevant to soft drink-induced enamel erosion. Nanoindentation was used to investigate changes in the nanomechanical properties of polished enamel surfaces after exposure to citric acid solutions. Solutions used had 38.1 mmol l,1 citric acid and pH greater than 2.3 but less than 6.3 (2.30 pH 6.30). Samples were exposed to rapidly stirred, constant composition solutions for 120 s. Statistically significant changes in enamel hardness and reduced elastic modulus were observed after exposure to all solutions. There was an approximately linear dependence of enamel hardness on solution pH for 2.90 pH 6.30. Below pH 2.90, enamel is thought to have reached the lowest possible hardness value. The reduction in enamel dissolution caused by an increase in pH of a soft drink is likely to be small. Product modification to reduce the erosive potential of drinks may require additional methods such as addition of calcium salts. [source]


Recombination-Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells

ADVANCED FUNCTIONAL MATERIALS, Issue 7 2009
Martijn Lenes
Abstract The charge transport and photogeneration in solar cells based on the low bandgap-conjugated polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H -cyclopenta[2,1-b; 3,4-b,]dithiophene)- alt -4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and fullerenes is studied. The efficiency of the solar cells is limited by a relatively low fill factor, which contradicts the observed good and balanced charge transport in these blends. Intensity dependent measurements display a recombination limited photocurrent, characterized by a square root dependence on effective applied voltage, a linear dependence on light intensity and a constant saturation voltage. Numerical simulations show that the origin of the recombination limited photocurrent stems from the short lifetime of the bound electron-hole pairs at the donor/acceptor interface. [source]


Polar-Molecule-Dominated Electrorheological Fluids Featuring High Yield Stresses

ADVANCED MATERIALS, Issue 45 2009
Rong Shen
Abstract Recent works on the development of various electrorheological (ER) fluids composed of TiO2, SrTiO, and CaTiO particles coated with CO/HO polar groups are summarized, in which an extremely large yield stress up to 200,kPa is measured and the dynamical yield stress reaches 117,kPa at a shear rate of 775,s,1. Moreover, unlike that of traditional dielectric ER fluids, the yield stress displays a linear dependence on electric field strength. Experimental results reveal that it is the polar molecules adsorbed onto the dielectric particles that play the decisive role: the polar-molecule-dominated ER effect arises from the alignment of polar molecules by the enhanced local electric field in the gap between neighboring particles. The pretreatment of electrodes and the contrivance of new measuring procedures, which are desirable for the characterization and practical implementation of this material, are also discussed. The successful synthesis of these fluids has made many of the long since conceived applications of the ER effect available. [source]


Size-Dependent Periodically Twinned ZnSe Nanowires,

ADVANCED MATERIALS, Issue 16 2004
Q. Li
Cubic ZnSe nanowires with periodically alternating twins along the wire growth direction (see Figure) have been synthesized using thermal evaporation with a Au catalyst. The periodicity of the alternating twins has a linear dependence on the diameter of the nanowires. Sharp excitonic peaks dominating the low-temperature photoluminescence spectrum of the nanowires reveal the high quality of their electronic structure despite the large unpassivated surface and interface associated with the twinned nanowire configuration. [source]


Comparative study of electrostatic solvent response by RISM and PCM methods,

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 2 2007
S. Chiodo
Abstract The solvent response on the solute is calculated by the reference interaction site model (RISM) and by the polarizable continuum model (PCM) methods. The linearized RISM technique is developed to treat free energies of atomic and polyatomic ions in water. An empirical repulsive bridge is used for the RISM calculations. The solvent electrostatic potential is approximated by a linear dependence on the solute atomic charges. For a series of monovalent polyatomic cations and anions, the method provides free energies deviating by few percent from the experimental data. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source]


Computational linear dependence in molecular electronic structure calculations using universal basis sets

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 4 2005
D. Moncrieff
Abstract Distributed universal even-tempered basis sets have been developed over recent years that are capable of supporting Hartree,Fock energies to an accuracy approaching the sub-,Hartree level. These basis sets have also been exploited in correlation studies, in applications to polyatomic molecules, and in the calculation of electric properties, such as multipole moments, polarizabilities, and hyperpolarizabilities. Jorge and coworkers have also developed universal basis sets and have recently reported applications to diatomic molecular systems. In this article, we compare the molecular calculations reported by Jorge and coworkers with our previous studies. Particular attention is given to the degree of computational linear dependence associated with the various basis sets employed and the consequential effects of the accuracy of the calculated energies. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source]


Fractal Dimension of Trabecular Bone Projection Texture Is Related to Three-Dimensional Microarchitecture

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2000
L. Pothuaud
Abstract The purpose of this work was to understand how fractal dimension of two-dimensional (2D) trabecular bone projection images could be related to three-dimensional (3D) trabecular bone properties such as porosity or connectivity. Two alteration processes were applied to trabecular bone images obtained by magnetic resonance imaging: a trabeculae dilation process and a trabeculae removal process. The trabeculae dilation process was applied from the 3D skeleton graph to the 3D initial structure with constant connectivity. The trabeculae removal process was applied from the initial structure to an altered structure having 99% of porosity, in which both porosity and connectivity were modified during this second process. Gray-level projection images of each of the altered structures were simply obtained by summation of voxels, and fractal dimension (Df) was calculated. Porosity (,) and connectivity per unit volume (Cv) were calculated from the 3D structure. Significant relationships were found between Df, ,, and Cv. Df values increased when porosity increased (dilation and removal processes) and when connectivity decreased (only removal process). These variations were in accordance with all previous clinical studies, suggesting that fractal evaluation of trabecular bone projection has real meaning in terms of porosity and connectivity of the 3D architecture. Furthermore, there was a statistically significant linear dependence between Df and Cv when , remained constant. Porosity is directly related to bone mineral density and fractal dimension can be easily evaluated in clinical routine. These two parameters could be associated to evaluate the connectivity of the structure. [source]


Notes on quantitative structure-properties relationships (QSPR) (1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 7 2009
Ramon Carbó-Dorca
Abstract Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown properties of known molecular structures are obtained. However, the reduced descriptor dimension causes linear dependence within the set of discrete vector molecular representations, leading to positive semi-definite Gram matrices in molecular spaces. To resolve this QSPR dimensionality paradox (QSPR DP) here is proposed to adopt as starting point the quantum QSPR (QQSPR) computational framework perspective, where density functions act as infinite dimensional descriptors. The fundamental QQSPR equation, deduced from employing quantum expectation value numerical evaluation, can be approximately solved in order to obtain models exempt of the QSPR DP. The substitution of the quantum similarity matrix by an empirical Gram matrix in molecular spaces, build up with the original non manipulated discrete molecular descriptor vectors, permits to obtain classical QSPR models with the same characteristics as in QQSPR, that is: possessing a certain degree of causality and explicitly independent of the descriptor dimension. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009 [source]


Using collision-induced dissociation with corrections for the ion number of degrees of freedom for quick comparisons of relative bonding strength

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 11 2004
Natalia Vinokur
Abstract The number of degrees of freedom-dependent stability of ions and ion,neutral non-covalent complexes under collision-induced dissociation (CID) conditions was studied in a quadrupole ion trap mass spectrometer. It was found that the stability of ions as probed by energy-variable CID has a linear dependence on the total number of degrees of freedom for the ions (or ion,neutral complexes) with the same (or nearly the same) bonding energy. The slope of such a stability vs number of degrees of freedom dependence correlates with the binding energy. Proton-bound amine dimers display the lowest slope as they have weak bonds. Breaking covalent bonds will result in much greater slopes. In addition to the binding energy, the vibrational frequencies of the ion also affect the stability vs number of degrees of freedom behavior. Studying such a dependence of the CID stability in a system paves the way for direct relative binding energy comparisons. The application of this approach is demonstrated by testing the relative heme affinities of anti-malaria drugs and related compounds. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Effect of input excitation on the quality of empirical dynamic models for type 1 diabetes

AICHE JOURNAL, Issue 5 2009
Daniel A. Finan
Abstract Accurate prediction of future blood glucose trends has the potential to significantly improve glycemic regulation in type 1 diabetes patients. A model-based controller for an artificial ,-cell, for example, would determine the most efficacious insulin dose for the current sampling interval given available input,output data and model predictions of the resultant glucose trajectory. The two inputs most influential to the glucose concentration are bolused insulin and meal carbohydrates, which in practice are often taken simultaneously and in a specified ratio. This linear dependence has adverse effects on the quality of linear dynamic models identified from such data. On the other hand, inputs with greater degrees of excitation may force the subject into extreme hypoglycemia or hyperglycemia, and thus may be clinically unacceptable. Inputs with good excitation that do not endanger the subject are shown to result in models that can predict glucose trends reasonably accurately, 1,2 h ahead. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Effect of Taylor vortices on mass transfer from a rotating cylinder

AICHE JOURNAL, Issue 11 2005
R. Srinivasan
Abstract Mass transfer from solids, which has important applications in a number of chemical and pharmaceutical industries, has been studied experimentally and semiempirically under turbulent flow conditions, and correlations are available in the literature to calculate the mass-transfer coefficients from pellets, rotating cylinders and disks etc. However, mass transfer under laminar flow has not been sufficiently addressed. One of the difficulties here is the strong Reynolds number dependence of the flow pattern, for example, due to the onset of Taylor vortices for the case of a rotating cylinder. This problem is circumvented by using a computational fluid dynamics (CFD)-based solution of the governing equations for the case of a cylinder rotating inside a stationary cylindrical outer vessel filled with liquid. The parameters cover a range of Reynolds number (based on the cylinder diameter, and the tangential speed of the cylinder), Schmidt number and the ratio of the outer to inner cylinder diameters. The results confirm that the circumferential velocity profile is a strong function of the Reynolds number and varies from a nearly Couette-type flow at very low Reynolds numbers to a boundary layer-like profile at high Reynolds numbers. The onset of Taylor vortices has a strong effect on the flow field and the mass-transfer mode. The calculations show that the Sherwood number has a linear dependence on the Reynolds number in the Couette-flow regime, and roughly square-root dependence after the onset of Taylor vortices. Correlations have been proposed to calculate the Sherwood number taking account of these effects. © 2005 American Institute of Chemical Engineers AIChE J, 2005 [source]


Synthesis of azobenzene-containing polymers via RAFT polymerization and investigation on intense fluorescence from aggregates of azobenzene-containing amphiphilic diblock copolymers

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2008
Jie Xu
Abstract The well-defined azobenzene-containing homopolymers, poly{6-(4-phenylazophenoxy)hexyl methacrylate (AHMA)} (PAHMA), were synthesized via reversible addition fragmentation chain transfer polymerization (RAFT) in anisole solution using 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN) as the RAFT agent and 2,2,-azobisisobutyronitrile (AIBN) as the initiator. The first-order kinetic plot of the polymerization and the linear dependence of molecular weights of the homopolymers with the relatively low polydispersity index values (PDIs , 1.25) on the monomer conversions were observed. Furthermore, the amphiphilic diblock copolymer, poly{6-(4-phenylazophenoxy)hexyl methacrylate (AHMA)}- b -poly{2-(dimethylamino)ethyl methacrylate (DMAEMA)} (PAHMA- b -PDMAEMA), was prepared with the obtained PAHMA as the macro-RAFT agent. The structures and properties of the polymers were characterized by 1H NMR and GPC, respectively. Interestingly, the amphiphilic diblock copolymers in chloroform (CHCl3) solution (PAHMA23 - b -PDMAEMA97 (4 × 10,5 M, Mn(GPC) = 18,400 g/mol, PDI = 1.48) and PAHMA28 - b -PDMAEMA117 (6 × 10,5 M, Mn(GPC) = 19,300 g/mol, PDI = 1.51) exhibited the intense fluorescence emission at ambient temperature. Moreover, the fluorescent intensity of PAHMA- b -PDMAEMA in CHCl3 was sensitive to the ultraviolet irradiation at 365 nm, which increased within the first 10 min and later decreased when irradiation time was prolonged to 30 min or longer. The well distributed, self-assembled micelles composed of azobenzene-containing amphiphilic diblock copolymers, (PAHMA- b -QPDMAEMA)s (QPDMAEMA is quaternized PDMAEMA), in the mixed N,N -dimethyl formamide (DMF)/H2O solutions were prepared. Their fluorescent intensities decreased with the increasing amount of water. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5652,5662, 2008 [source]


Synthesis of amphiphilic copolymer brushes: Poly(ethylene oxide)-graft-polystyrene

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2006
Zhongyu Li
Abstract A well-defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3-epoxypropyl-1-ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well-defined polymer poly(ethylene oxide- co -2,3-epoxypropyl-1-ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide- co -glycidol) [poly(EO- co -Gly)]} with multiple pending hydroxymethyl groups was esterified with 2-bromoisobutyryl bromide to produce the macro-ATRP initiator [poly(EO- co -Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight-average molecular weight/number-average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361,4371, 2006 [source]


Cp2TiCl-catalyzed living radical polymerization of styrene initiated from peroxides

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2006
Alexandru D. Asandei
Abstract The effects of the reaction conditions and nature of the initiator were investigated in the Cp2Ti(III)Cl-catalyzed living radical polymerization of styrene initiated by benzoyl peroxide (BPO), tert -butyl peroxide (TBPO), tert -butyl peroxybenzoate (TBPOB), dicumyl peroxide (CPO), and tert -butylperoxy 2-ethylhexyl carbonate (TBPOEHC). The reversible termination of the growing chains with Cp2Ti(III)Cl affords a linear dependence of molecular weight on conversion over a wide range of temperatures (60,120 °C) with an optimum in polydispersity (Mw/Mn < 1.2) for St/BPO/Cp2TiCl2/Zn = 100/1/3/6 at 60,90 °C. The similarity of the kinetic parameters from polymerizations initiated by peroxides with vastly different half-life times (t = 1 h, t = 543 h) and the minimum peroxide/Ti = 1/2 ratio required for a living process indicate that initiation occurs primarily by the redox reaction of the peroxide with Cp2Ti(III)Cl rather than peroxide thermal decomposition. This is consistent with one Ti equivalent consumed in the redox initiation and the second one utilized in the reversible termination of the growing chains. Qualitatively, based on the livingness of the process, these initiators ranked as BPO > TBPOB , TBPO > CPO > TBPOEHC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1106,1116, 2006 [source]


Radiation-grafted ion-exchange membranes: Influence of the initial matrix on the synthesis and structure

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 17 2001
Nadia Walsby
Abstract A series of commercial fluoropolymer films was irradiated with an electron beam, grafted with styrene, and sulfonated. The influence of the initial fluoropolymer on the grafting yields and the properties of the grafted and sulfonated membranes were investigated. The same synthesis procedure can be followed for most fluoropolymers and samples with a similar degree of grafting, and a homogenous polystyrene distribution can be prepared by varying the absorbed dose. The main difference among different fluoropolymer-based membranes is the water uptake from liquid water that has a roughly linear dependence on the crystallinity of the sample. The more amorphous the initial material, the greater the water uptake. Mechanical properties of the membranes at 50% relative humidity differ less than those of the starting materials and are comparable to those of Nafion® 105. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3008,3017, 2001 [source]


Monolithic poly(glycidyl methacrylate- co -divinylbenzene) capillary columns functionalized to strong anion exchangers for nucleotide and oligonucleotide separation

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 16 2006
Wolfgang Wieder
Abstract In the present work, poly(glycidyl methacrylate- co -divinylbenzene) monoliths were synthesized and further derivatized to obtain strong anion exchange supports. Capillary monoliths (65×0.2 mm id) were prepared in situ by copolymerization of glycidyl methacrylate and divinylbenzene, employing 1-decanol and tetrahydrofuran as porogens. The free epoxy groups were derivatized in a two step synthesis to obtain quaternary ammonium functionalities. On testing the pressure stability of the synthesized monolith, a highly linear dependence between flow rate and pressure drop was obtained, indicating the high stability of the material even at high flow rates. The morphology of the copolymer was investigated by scanning electron microscopy. Mercury intrusion porosimetry showed a narrow pore size distribution, having a maximum at 439 nm. On recording a van Deemter plot the number of theoretical plates per meter was found to be 59 324. The produced strong anion exchange monoliths turned out to be highly suitable for the separation of nucleotides and oligonucleotides. [source]


Analysis of the timing jitter of dispersion-managed solitons controlled by filters

LASER PHYSICS LETTERS, Issue 10 2004
M. H. Sousa
Abstract Using a variational approach, an exact analytical expression is derived for the variance of the timing jitter of a dispersion-managed soliton in the presence of lumped narrowband filters. The asymptotic timing jitter shows a linear dependence with distance, which is in contrast with the cubic dependence in the unfiltered case. We show that the suppression of the timing can be achieved by choosing conveniently the position and the strength of the optical filter. (© 2004 by ASTRO, Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA) [source]


Correlation between Morphology, Water Uptake, and Proton Conductivity in Radiation-Grafted Proton-Exchange Membranes

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 6 2010
Sandor Balog
Abstract An SANS investigation of hydrated proton exchange membranes is presented. Our membranes were synthesized by radiation-induced grafting of ETFE with styrene in the presence of a crosslinker, followed by sulfonation of the styrene. The contrast variation method was used to understand the relationship between morphology, water uptake, and proton conductivity. The membranes are separated into two phases. The amorphous phase hosts the water and swells upon hydration, swelling being inversely proportional to the degree of crosslinking. Hydration and proton conductivity exhibit linear dependence on swelling. Proton conductivity and volumetric fraction of water are related by a power law, indicating a percolated network of finely dispersed aqueous pores in the hydrophilic domains. [source]


Living Ring-Opening Polymerization of Cyclic Esters with Epoxide-Derived Titanium Alkoxides,

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 8 2005
Alexandru D. Asandei
Abstract Summary: The TiIIICp2Cl-catalyzed radical ring opening of epoxides produces Ti alkoxides which initiate the ring-opening polymerization of , -caprolactone. A linear dependence of on conversion, linear kinetics, low values, and the synthesis of block copolymers demonstrate a living process, while NMR spectroscopy confirms the presence of the initiator chain end. Epoxides are thus introduced as a new class of initiators for the Ti-catalyzed living ring-opening polymerization of cyclic esters. The TiCp2Cl-catalyzed radical ring opening of epoxides followed by the initiation of the living ring-opening polymerization of , -caprolactone. [source]


Interior-point method for non-linear non-convex optimization

NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, Issue 5-6 2004
Ladislav Luk
Abstract In this paper, we propose an algorithm for solving non-linear non-convex programming problems, which is based on the interior point approach. Main theoretical results concern direction determination and step-length selection. We split inequality constraints into active and inactive to overcome problems with stability. Inactive constraints are eliminated directly while active constraints are used to define symmetric indefinite linear system. Inexact solution of this system is obtained iteratively using indefinitely preconditioned conjugate gradient method. Theorems confirming efficiency of several indefinite preconditioners are proved. Furthermore, new merit function is defined, which includes effect of possible regularization. This regularization can be used to overcome problems with near linear dependence of active constraints. The algorithm was implemented in the interactive system for universal functional optimization UFO. Results of extensive numerical experiments are reported. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Anomalous charge relaxation in channels of pentacene-based organic field-effect transistors: a charge transient spectroscopy study

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 10 2006
I. Thurzo
Abstract Two types of Si/SiO2/pentacene organic field-effect transistors (OFET) with bottom Au-source (S) and , drain (D) electrodes were examined by charge transient spectroscopy (QTS), applying pulsed bias ,UDS to the channel of an OFET with floating gate electrode. The transient charge Q (t ), flowing through the channel after the removal of the bias pulse, was processed at a constant temperature by a three-channel correlator yielding the signal ,Q = Q (t1) , 3/2Q (2t1) + 1/2Q (4t1), the scanned delay t1 being related to the trailing edge of the bias pulse. Most of the QTS spectra were characterized by peaks of ,Q (t1) with FWHM corresponding to discrete time constants ,m , t1m, while scanning t1 from 2 ,s to 0.1 s. The common feature of the QTS spectra was a linear dependence of the peak height ,Qm on ,UDS for both polarities of the latter, thereby resembling what is expected for dielectric relaxation (polarization). Some devices showed anomalous (reversed) sign of the signal with respect to the polarity of ,UDS, or even features like transitions from the correct sign to the reversed one. In order to customize the anomalies, a model is presented which ignores injection of excess charge carriers and takes into account two contributions to the total transient charge: a/space charge of intrinsic charge carriers piled up at the blocking Au-electrodes during the pulse, relaxing with the dielectric relaxation time ,D = ,0,r/, (, being conductivity of the organics); b/orientation of molecular dipoles (,dip) in the relaxing electric field of the space charge. It is the dipolar component that is responsible for the anomalous charge flow direction manifested by the signal reversal. The origin of the permanent dipole moment of the otherwise non-polar pentacene molecules may be either attached excess or missing atoms (vacancies) of the defect molecules [J. E. Northrup and M. L. Chabinyc, Phys. Rev. B 68, 041202 (2003)]. In cases of non-blocking contacts the dipolar relaxation would lead to QTS peaks of correct sign, to be distinguished from possibly non-negligible contribution of the dielectric relaxation in the semiconductor. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Dependence of the band-gap pressure coefficients of self-assembled InAs/GaAs quantum dots on the quantum dot size

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2007
C. Kristukat
Abstract We report on low-temperature photoluminescence experiments on self-assembled InAs/GaAs quantum dots under high hydrostatic pressure up to 8 GPa using a diamond anvil cell. The sample exhibits a multimodal size distribution of the quantum dots, which gives rise to a characteristic emission profile displaying up to nine clearly separable peaks attributed to the ground-state recombination from each quantum dot subensemble with different size. Structural analysis revealed that their size differs in entire monolayer steps. The measured pressure coefficients for each subensemble show a linear dependence on their zero-pressure emission energy ranging from 65 meV/GPa for the largest dots to 112 meV/GPa for the smallest ones. Pressure dependent strain simulations based on an atomistic valence-force field yield that the pressure coefficient of the InAs band-gap is strongly reduced when InAs is embedded in a GaAs matrix. Taking into account confinement effects within the envelope function approximation, the calculated pressure coefficients are in good agreement with the experimental findings. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Synthesis, characterization and ESR measurements of CoNiO nanoparticles

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 8 2005
Y. Köseo
Abstract Powders of cobalt core with a nickel (II) oxide shell (CoNiO) have been studied by Electron Spin Resonance (ESR) technique in the temperature range of 10,300 K. A strong and broad (1300 G) single ESR peak in X-, K- and Q-band spectra has been observed at all the temperature ranges. While the resonance field remains almost constant, both the ESR line intensity and the line width were seen to increase first slowly down to Tc = 160 K. And then both the resonance field and the ESR signal intensity decrease and the line width increase with decreasing temperature. Below Tc the intensity smoothly decrease down to 10 K. This kind of behavior is attributed to a typical spin-glass like behavior. Some small and relatively smooth changes at about 60 K, 90 K, 210 K, and 250 K are appeared as well. A linear dependence of resonance field to microwave frequency is observed at room temperatures and the effective g-value and internal field are theoretically found as 2,17 and 90 G, respectively. The experimental data indicate a very strong spin disorder (spin frustration) due to antiferromagnetic exchange interactions among the spins. This is attributed to the D-M anisotropy on the particle surfaces that it is expected to enhance due to increment of surface-to-volume ratio. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]