Home About us Contact | |||
Linear Calibration Graphs (linear + calibration_graph)
Selected AbstractsRapid Determination of Gallamine Triethiodide (Flaxedil®) and Pancuronium Bromide (Pavulon®) in Pharmaceutical and Urine Matrices by Means of Modified-Carbon-Paste Ion-Selective ElectrodesHELVETICA CHIMICA ACTA, Issue 4 2005A new analytical method for the determination of gallamine triethiodide (Flaxedil®; 1) and pancuronium bromide (Pavulon®; 2), two muscle relaxants used in surgical operations and in pain relief, has been developed. Our approach relies on rapid, precise, and sensitive potentiometric sensors based on modified-carbon-paste ion-selective electrodes (CP-ISEs). Linear calibration graphs in the working ranges of ca. 4.5,892 and 7.3,733,,g/ml (in H2O, pH,7.0, T=25°) were established for 1 and 2, respectively; and Nernst slopes corresponding to three- or two-electrons transfers, respectively, were obtained. The method works best in a pH range of 7,9. Average relative errors of 2.12 and 2.14%, with average standard deviations of 1.98,2.47 and 2.64,3.45, respectively, were obtained for urine samples of 1 and 2. The corresponding relative errors for the pharmaceutical samples were 1.59 and 1.64%, with standard deviations of 0.54,1.34 and 0.52,1.67, respectively. Statistical Student and F tests were applied to the data, and satisfactory results were obtained. [source] High-performance liquid chromatography with sequential injection for online precolumn derivatization of some heavy metalsJOURNAL OF SEPARATION SCIENCE, JSS, Issue 16 2007Rodjana Burakham Abstract HPLC was coupled with sequential injection (SI) for simultaneous analyses of some heavy metals, including Co(II), Ni(II), Cu(II), and Fe(II). 2-(5-Nitro-2-pyridylazo)-5-[N -propyl- N -(3-sulfopropyl)amino]phenol (nitro-PAPS) was employed as a derivatizing reagent for sensitive spectrophotometric detection by online precolumn derivatization. The SI system offers an automated handling of sample and reagent, online precolumn derivatization, and propulsion of derivatives to the HPLC injection loop. The metal,nitro-PAPS complexes were separated on a C18 -,Bondapak column (3.9×300 mm2). Using the proposed SI-HPLC system, determination of four metal ions by means of nitro-PAPS complexes was achieved within 13 min in which the parallel of derivatization and separation were processed at the same time. Linear calibration graphs were obtained in the ranges of 0.005,0.250 mg/L for Cu(II), 0.007,1.000 mg/L for Co(II), 0.005,0.075 mg/L for Ni(II), and 0.005,0.100 mg/L for Fe(II). The system provides means for automation with good precision and minimizing error in solution handling with the RSD of less than 6%. The detection limits obtained were 2 ,g/L for Cu(II) and Co(II), and 1 ,g/L for Ni(II) and Fe(II). The method was successfully applied for the determination of metal ions in various samples, including milk powder for infant, mineral supplements, local wines, and drinking water. [source] Differential Kinetic Spectrophotometric Determination of Methamidophos and Fenitrothion in Water and Food Samples by Use of ChemometricsCHINESE JOURNAL OF CHEMISTRY, Issue 3 2010Na Deng Abstract A spectrophotometric method for simultaneous analysis of methamidophos and fenitrothion was proposed by application of chemometrics to the spectral kinetic data, which was based upon the difference in the inhibitory effect of the two pesticides on acetylcholinesterase (AChE) and the use of 5,5,-dithiobis(2-nitrobenzoic acid) (DTNB) as a chromogenic reagent for the thiocholine iodide (TChI) released from the acetylthiocholine iodide (ATChI) substrate. The absorbance of the chromogenic product was measured at 412 nm. The different experimental conditions affecting the development and stability of the chromogenic product were carefully studied and optimized. Linear calibration graphs were obtained in the concentration range of 0.5,7.5 ng·mL,1 and 5,75 ng·mL,1 for methamidophos and fenitrothion, respectively. Synthetic mixtures of the two pesticides were analysed, and the data obtained processed by chemometrics, such as partial least square (PLS), principal component regression (PCR), back propagation-artificial neural network (BP-ANN), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). The results show that the RBF-ANN gives the lowest prediction errors of the five chemometric methods. Following the validation of the proposed method, it was applied to the determination of the pesticides in several commercial fruit and vegetable samples; and the standard addition method yielded satisfactory recoveries. [source] Photoelectrocatalytic Oxidation of NADH with Electropolymerized Toluidine Blue OELECTROANALYSIS, Issue 2-3 2007Yusuf Dilgin Abstract A poly(Toluidine Blue O) (poly-TBO) modified electrode was successfully prepared by repeated sweeping the applied potential from ,0.6 to +0.8,V (vs. SCE) on a glassy carbon electrode (GCE) in borate buffer solution at pH,9.1,containing 0.1,M NaNO3 and 0.4,mM Toluidine Blue O (TBO). The poly-TBO modified GCE shows electrocatalytic activity toward NADH oxidation in phosphate buffer solution at pH,7.0, with an overpotential of ca. 350,mV lower than that at the bare electrode. The photoelectrocatalytic oxidation of NADH at this electrode was also successfully investigated by using cyclic voltammetry and amperometry at constant potential. When the modified electrode surface was irradiated with a 250,W halogen lamp, a photoelectrocatalytic effect was observed for NADH oxidation and the current was increased about 2.2 times. The applied potential was selected at +100,mV for amperometric and photoamperometric detection of NADH. A linear calibration graph for NADH was obtained in the range between 1.0×10,5 and 1.0×10,3 M and between 5.0×10,6 and 1.0×10,3 M for amperometric and photoamperometric studies, respectively. The effect of some interfering compounds, such as ascorbic acid and dopamine on the electrocatalytic and photoelectrocatalytic oxidation of NADH was tested. [source] Arbutin determination in medicinal plants and creamsINTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 2 2009W. Thongchai Synopsis A simple flow injection (FI) manifold with spectrophotometric detection was fabricated and tested for arbutin determination. It is based on the measurement of a red-coloured product at 514 nm formed by the complexation reaction between arbutin and 4-aminoantipyrine (4-AP) in the presence of hexacyanoferrate (III) in an alkaline medium. On injecting 300 ,L standard solutions at various concentrations of arbutin into the FI system under optimum conditions, a linear calibration graph over the range of 1.0,30.0 ,g mL,1 arbutin was established. It is expressed by the regression equation y = 0.2188 ± 0.0036x + 0.1019 ± 0.0366 (r2 = 0.9990, n = 5). The detection limit (3,) and the limit of quantitation (10,) were 0.04 ,g mL,1 and 0.13 ,g mL,1, respectively. The RSD of intraday and interday precisions were found to be 1.2,1.4% and 1.7,2.7%, respectively. The method was successfully applied in the determination of arbutin in four selected fruits and three commercial whitening cream extracts with the mean recoveries of the added arbutin over the range of 96.2,99.0%. No interference effects from some common excipients used in commercial whitening creams were observed. The method is simple, rapid, selective, accurate, reproducible and relatively inexpensive. Résumé Un collecteur simple pour injection en flux (FI) avec détection spectrométrique a été fabriqué et testé pour le dosage de l'arbutine. Son principe repose sur la mesure à 514 nm du produit rouge formé par la réaction de complexation entre l'arbutine et le 4-aminoantipyrine (4-AP) en présence d'hexacyanoferrate (III) en milieu alcalin. On procède à une injection de 300 ,L des solutions standards à diverses concentrations d'arbutine dans le système FI aux conditions optimales, puis on réalise un graphe de calibration linéaire dans l'intervalle de 1,0 à 30,0 ,g mL,1 d'arbutine. Le graphe correspond à l'équation de régression y = 0.2188 ± 0.0036x + 0.1019 ± 0.0366 (r2 = 0.9990, n = 5). La limite de détection (3,) et la limite de quantification (10,) sont respectivement de 0.04 ,g mL,1 et 0.13 ,g mL,1. La RSD des précisions intra et inter jours sont respectivement de 1.2,1.4% et 1.7,2.7%. La méthode a été appliquée avec succès à la mesure de l'arbutine dans 4 fruits sélectionnés et 3 extraits de crèmes de blanchiment commercialisées avec une recouvrance moyenne de l'arbutine ajoutée de 96.2 à 99%. Aucune interférence avec les excipients communément utilisés dans les crèmes de blanchiment commerciales n'a été observée. La méthode est simple, rapide, sélective, précise, reproductible et relativement bon marché. [source] Validated capillary electrophoresis assay for the simultaneous enantioselective determination of propafenone and its major metabolites in biological samplesELECTROPHORESIS, Issue 8 2006Minoo Afshar Abstract A robust, inexpensive, and fully validated CE method for the simultaneous determination of the enantiomers of propafenone (PPF), 5-hydroxy-propafenone (5OH-PPF) and N -despropyl-propafenone (NOR-PPF) in serum and in in vitro media is described. It is based upon liquid,liquid extraction at alkaline pH followed by analysis of the reconstituted extract by CE in presence of a pH,2.0 running buffer composed of 100,mM sodium phosphate, 19% methanol, and 0.6% highly sulfated ,-CD. For each compound, the S -enantiomers are shown to migrate ahead of their antipodes, and the overall run time is about 30,min. Enantiomer levels between 25 and 1000,ng/mL provide linear calibration graphs, and the LOD for all enantiomers is between 10 and 12,ng/mL. The assay is shown to be suitable for the determination of the enantiomers of PPF and its metabolites in in vitro incubations comprising human liver microsomes or single CYP450 enzymes (SUPERSOMES). Incubations with CYP2D6 SUPERSOMES revealed, for the first time, the simultaneous formation of the enantiomers of 5OH-PPF and NOR-PPF with that enzyme. CE data can be used for the evaluation of the enzymatic N -dealkylation and hydroxylation rates. [source] |