Light-Emitting Devices (Light-Emitt + device)

Distribution by Scientific Domains


Selected Abstracts


Modifying the Output Characteristics of an Organic Light-Emitting Device by Refractive-Index Modulation,

ADVANCED FUNCTIONAL MATERIALS, Issue 18 2006
T. Höfler
Abstract In order to modify the output characteristics of organic light-emitting devices (OLEDs), the optical properties of an active layer within the device are patterned without introducing any thickness modulation. For this purpose a new conjugated copolymer, which serves as a hole-transporting material and at the same time can be index patterned using UV techniques, is synthesized. Poly(VC- co -VBT) (VC: N -vinylcarbazole; VBT: 4-vinylbenzyl thiocyanate) is prepared by free-radical copolymerization of VC and VBT. The material contains photoreactive thiocyanate groups that enable altering of the material's refractive index under UV illumination. This copolymer is employed as a patternable hole-transporting layer in multilayer OLEDs. Refractive-index gratings in poly(VC- co -VBT) are inscribed using a holographic setup based upon a Lloyd mirror configuration. The fourth harmonic of a Nd:YAG (YAG: yttrium aluminum garnet) laser (266,nm) serves as the UV source. In this way 1D photonic structures are integrated in an OLED containing AlQ3 (tris(8-hydroxyquinoline) aluminum) as the emitting species. It is assured that only a periodical change of the refractive index (,n,=,0.006 at ,,=,540,nm) is generated in the active material but no surface-relief gratings are generated. The patterned devices show more forward-directed out-coupling behavior than unstructured devices (increase in luminosity by a factor of five for a perpendicular viewing direction). This effect is most likely due to Bragg scattering. For these multilayer structures, optimum outcoupling was observed for grating periods ,,,,390,nm. [source]


Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant

ADVANCED FUNCTIONAL MATERIALS, Issue 11 2010
Kyoung Soo Yook
Abstract Cesium azide (CsN3) is employed as a novel n-dopant because of its air stability and low deposition temperature. CsN3 is easily co-deposited with the electron transporting materials in an organic molecular beam deposition chamber so that it works well as an n-dopant in the electron transport layer because its evaporation temperature is similar to that of common organic materials. The driving voltage of the p-i-n device with the CsN3 -doped n-type layer and a MoO3 -doped p-type layer is greatly reduced, and this device exhibits a very high power efficiency (57,lm W,1). Additionally, an n-doping mechanism study reveals that CsN3 was decomposed into Cs and N2 during the evaporation. The charge injection mechanism was investigated using transient electroluminescence and capacitance,voltage measurements. A very highly efficient tandem organic light-emitting diodes (OLED; 84,cd A,1) is also created using an n,p junction that is composed of the CsN3 -doped n-type organic layer/MoO3 p-type inorganic layer as the interconnecting unit. This work demonstrates that an air-stable and low-temperature-evaporable inorganic n-dopant can very effectively enhance the device performance in p-i-n and tandem OLEDs, as well as simplify the material handling for the vacuum deposition process. [source]


Correlation Between Triplet,Triplet Annihilation and Electroluminescence Efficiency in Doped Fluorescent Organic Light-Emitting Devices

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2010
Yichun Luo
Abstract Triplet,triplet annihilation (TTA) is studied in a wide range of fluorescent host:guest emitter systems used in organic light-emitting devices (OLEDs). Strong TTA is observed in host:guest systems in which the dopant has a limited charge-trapping capability. On the other hand, systems in which the dopant can efficiently trap charges show insignificant TTA, an effect that is due, in part, to the efficient quenching of triplet excitons by the trapped charges. Fluorescent host:guest systems with the strongest TTA are found to give the highest OLED electroluminescence efficiency, a phenomenon attributed to the role of TTA in converting triplet excitons into additional singlet excitons, thus appreciably contributing to the light output of OLEDs. The results shed light on and give direct evidence for the phenomena behind the recently reported very high efficiencies attainable in fluorescent host:guest OLEDs with quantum efficiencies exceeding the classical 25% theoretical limit. [source]


Efficient Light-Emitting Devices Based on Phosphorescent Polyhedral Oligomeric Silsesquioxane Materials

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2009
Xiaohui Yang
Abstract Synthesis, photophysical, and electrochemical characterizations of iridium-complex anchored polyhedral oligomeric silsesquioxane (POSS) macromolecules are reported. Monochromatic organic light-emitting devices based on these phosphorescent POSS materials show peak external quantum efficiencies in the range of 5,9%, which can be driven at a voltage less than 10,V for a luminance of 1000,cd m,2. The white-emitting devices with POSS emitters show an external quantum efficiency of 8%, a power efficiency of 8.1,lm W,1, and Commission International de'lÉclairage coordinates of (0.36, 0.39) at 1000,cd m,2. Encouraging efficiency is achieved in the devices based on hole-transporting and Ir-complex moieties dual-functionalized POSS materials without using host materials, demonstrating that triplet-dye and carrier-transporting moieties functionalized POSS material is a viable approach for the development of solution-processable electrophosphorescent devices. [source]


Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,

ADVANCED FUNCTIONAL MATERIALS, Issue 14 2007
Y. Chan
Abstract The present work investigates the influence of the n-type layer in the connecting unit on the performance of tandem organic light-emitting devices (OLEDs). The n-type layer is typically an organic electron-transporting layer doped with reactive metals. By systematically varying the metal dopants and the electron-transporting hosts, we have identified the important factors affecting the performance of the tandem OLEDs. Contrary to common belief, device characteristics were found to be insensitive to metal work functions, as supported by the ultraviolet photoemission spectroscopy results that the lowest unoccupied molecular orbitals of all metal-doped n-type layers studied here have similar energy levels. It suggests that the electron injection barriers from the connecting units are not sensitive to the metal dopant used. On the other hand, it was found that performance of the n-type layers depends on their electrical conductivities which can be improved by using an electron-transporting host with higher electron mobility. This effect is further modulated by the optical transparency of constituent organic layers. The efficiency of tandem OLEDs would decrease as the optical transmittance decreases. [source]


Luminescence Properties of Aminobenzanthrones and Their Application as Host Emitters in Organic Light-Emitting Devices,

ADVANCED FUNCTIONAL MATERIALS, Issue 3 2007
M.-X. Yu
Abstract A series of aminobenzanthrone derivatives, possessing a keto and an amino group on the aromatic ring, are synthesized and their photoluminescence (PL) and electroluminescence (EL) properties are studied in detail. These compounds emit strongly in solution and in the solid state, with the emission maxima in the range of 528,668,nm resulting from charge-transfer transitions from the amino group to the keto moiety. The emission wavelength depends greatly on the polarity of the solvent. A red shift of nearly 100,nm is observed from n -hexane to dichloromethane for each of these compounds. The PL quantum yields of these molecules also depend tremendously on the solvent. The values are between 88 and 70,% in n- hexane and decrease as the polarity of the solvent increases. The single-crystal X-ray diffraction data reveal that the aminobenzanthrone planes of these molecules stack in the crystals in an antiparallel head-to-tail fashion. This strong dipole,dipole interaction accounts for the observed red-shifted emissions of the aminobenzanthrone molecules in powders and in films relative to those in nonpolar solvents. Electroluminescent devices using aminobenzanthrone derivatives as the host emitters or dopants emit orange to red light in the range 590,645,nm. High brightness, current efficiency, and power efficiency are observed for some of these devices. For example, the device using N -(4- t -butylphenyl)- N -biphenyl-3-benzanthronylamine as the emitter gives saturated red light with a current efficiency of 1.82,cd,A,1, brightness of 11,253,cd,m,2, and Commission Internationale de l'Éclairage (CIE) coordinates of (0.64,0.36); the device using N -(2-naphthyl)- N -phenyl-3-benzanthronylamine as the emitter gives orange,red light with a current efficiency of 3.52,cd,A,1, brightness of 25,000,cd,m,2, and CIE coordinates of (0.61,0.38). [source]


Soft-Contact Optical Lithography Using Transparent Elastomeric Stamps and Application to Nanopatterned Organic Light-Emitting Devices

ADVANCED FUNCTIONAL MATERIALS, Issue 9 2005
T.-W. Lee
Abstract Conventional photolithography uses rigid photomasks of fused quartz and high-purity silica glass plates covered with patterned microstructures of an opaque material. We introduce new, transparent, elastomeric molds (or stamps) of poly(dimethylsiloxane) (PDMS) that can be employed as photomasks to produce the same resist pattern as the pattern of the recessed (or non-contact) regions of the stamps, in contrast to other reports in the literature[1] of using PDMS masks to generate edge patterns. The exposure dose of the non-contact regions with the photoresist through the PDMS is lower than that of the contact regions. Therefore, we employ a difference in the effective exposure dose between the contact and the non-contact regions through the PDMS stamp to generate the same pattern as the PDMS photomask. The photomasking capability of the PDMS stamps, which is similar to rigid photomasks in conventional photolithography, widens the application boundaries of soft-contact optical lithography and makes the photolithography process and equipment very simple. This soft-contact optical lithography process can be widely used to perform photolithography on flexible substrates, avoiding metal or resist cracks, as it uses soft, conformable, intimate contact with the photoresist without any external pressure. To this end, we demonstrate soft-contact optical lithography on a gold-coated PDMS substrate and utilized the patterned Au/PDMS substrate with feature sizes into the nanometer regime as a top electrode in organic light-emitting diodes that are formed by soft-contact lamination. [source]


Ink-Jet Printing of Luminescent Ruthenium- and Iridium-Containing Polymers for Applications in Light-Emitting Devices

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 4 2005
Emine Tekin
Abstract Summary: Defined films of luminescent ruthenium(II) polypyridyl-poly(methyl methacrylate) (PMMA) and iridium(III) polypyridyl-polystyrene (PS) copolymers could be prepared by ink-jet printing. The copolymers were deposited on photoresist-patterned glass substrates. Films as thin as 120 nm could be printed with a roughness of 1 to 2%. In addition, the film thickness could be varied in a controlled way through the number of droplets deposited per unit area. The topography of the ink-jet printed films was analyzed utilizing an optical profilometer. The absorbance and emission spectra were measured using fast parallel UV-vis and fluorescence plate reader. Photo of the solutions of luminescent ruthenium (left) and iridium (right) containing polymers in a glass microtiter plate (top). The subsequently prepared films using ink-jet dispensing techniques are shown below. [source]