Light Gradient (light + gradient)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Photosynthetic Acclimation to Simultaneous and Interacting Environmental Stresses Along Natural Light Gradients: Optimality and Constraints

PLANT BIOLOGY, Issue 3 2004
ü. Niinemets
Abstract: There is a strong natural light gradient from the top to the bottom in plant canopies and along gap-understorey continua. Leaf structure and photosynthetic capacities change close to proportionally along these gradients, leading to maximisation of whole canopy photosynthesis. However, other environmental factors also vary within the light gradients in a correlative manner. Specifically, the leaves exposed to higher irradiance suffer from more severe heat, water, and photoinhibition stresses. Research in tree canopies and across gap-understorey gradients demonstrates that plants have a large potential to acclimate to interacting environmental limitations. The optimum temperature for photosynthetic electron transport increases with increasing growth irradiance in the canopy, improving the resistance of photosynthetic apparatus to heat stress. Stomatal constraints on photosynthesis are also larger at higher irradiance because the leaves at greater evaporative demands regulate water use more efficiently. Furthermore, upper canopy leaves are more rigid and have lower leaf osmotic potentials to improve water extraction from drying soil. The current review highlights that such an array of complex interactions significantly modifies the potential and realized whole canopy photosynthetic productivity, but also that the interactive effects cannot be simply predicted as composites of additive partial environmental stresses. We hypothesize that plant photosynthetic capacities deviate from the theoretical optimum values because of the interacting stresses in plant canopies and evolutionary trade-offs between leaf- and canopy-level plastic adjustments in light capture and use. [source]


Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment

FRESHWATER BIOLOGY, Issue 2 2004
Marc Schallenberg
Summary 1. Wind-induced sediment resuspension can affect planktonic primary productivity by influencing light penetration and nutrient availability, and by contributing meroplankton (algae resuspended from the lake bed) to the water column. We established relationships between sediment resuspension, light and nutrient availability to phytoplankton in a shallow lake on four occasions. 2. The effects of additions of surficial sediments and nutrients on the productivity of phytoplankton communities were measured in 300 mL gas-tight bottles attached to rotating plankton wheels and exposed to a light gradient, in 24 h incubations at in situ temperatures. 3. While sediment resuspension always increased primary productivity, resuspension released phytoplankton from nutrient limitation in only two of the four experiments because the amount of available nitrogen and phosphorus entrained from the sediments was small compared with typical baseline levels in the water column. In contrast, chlorophyll a entrainment was substantial compared with baseline water column concentrations and the contribution of meroplankton to primary production was important at times, especially when seasonal irradiance in the lake was high. 4. Comparison of the in situ light climate with the threshold of light-limitation of the phytoplankton indicated that phytoplankton in the lake were only likely to be light-limited at times of extreme turbidity (e.g. >200 nephelometric turbidity units), particularly when these occur in winter. Therefore, resuspension influenced phytoplankton production mainly via effects on available nutrients and by entraining algae. The importance of each of these varied in time. 5. The partitioning of primary productivity between the water column and sediments in shallow lakes greatly influences the outcome of resuspension events for water column primary productivity. [source]


The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance

FUNCTIONAL ECOLOGY, Issue 1 2000
T. Rijkers
Abstract 1.,Light-saturated rate of photosynthesis (Amax), nitrogen (N), chlorophyll (Chl) content and leaf mass per unit area (LMA) were measured in leaves of trees of different heights along a natural light gradient in a French Guiana rain forest. The following four species, arranged in order from most shade-tolerant to pioneer, were studied: Duguetia surinamensis, Vouacapoua americana, Dicorynia guianensis and Goupia glabra. Light availability of trees was estimated using hemispherical photography. 2.,The pioneer species Goupia had the lowest LMA and leaf N on both an area and mass basis, whereas Duguetia had the highest values. In general, leaf variables of Vouacapoua and Dicorynia tended to be intermediates. Because Amax/area was similar among species, Goupia showed both a much higher light-saturated photosynthetic nitrogen-use efficiency (PNUEmax) and Amax/mass. Leaves of Vouacapoua demonstrated the greatest plasticity in Amax/area, particularly in small saplings. 3.,A distinction could be made between the effect of tree height and light availability on the structural, i.e. LMA, and photosynthetic leaf characteristics of all four species. The direction and magnitude of the variation in variables were similar among species. 4.,LMA was the key variable that mainly determined variation in the other leaf variables along tree height and light availability gradients, with the exception of changes in chlorophyll concentration. Amax/area, N/area, LMA and stomatal conductance to water vapour (gs) increased, whereas Chl/mass decreased, with both increasing tree height and canopy openness. Amax/mass, PNUEmax and Amax/Chl increased with increasing openness only. N/mass and Chl/area were independent of tree height and openness, except for small saplings of Goupia which had a much lower Chl/area. [source]


Maximum size distributions in tropical forest communities: relationships with rainfall and disturbance

JOURNAL OF ECOLOGY, Issue 3 2008
Lourens Poorter
Summary 1The diversity and structure of communities are partly determined by how species partition resource gradients. Plant size is an important indicator of species position along the vertical light gradient in the vegetation. 2Here, we compared the size distribution of tree species in 44 Ghanaian tropical forest communities, using data from 880 one-hectare plots and over 118 000 trees belonging to more than 210 species. 3The size distribution of forest species showed a continuous normal or log-normal distribution, with many canopy species and a few large species, and varied from community to community. Multiple regression showed that this variation is related to rainfall and to disturbance. 4Size distributions in wet forests were less skewed than those in dry forests, with a smaller proportion of big species and a smaller size range. At the same time they exhibited tighter species packing, resulting in higher species richness. Communities with high disturbance have less species packing and lower species richness. 5Synthesis. We conclude that the factors that constrain organism size and species coexistence in these tropical forest tree communities differ from those known to operate on a number of well-studied animal communities. [source]


Seedling growth and morphology of three oak species along field resource gradients and seed mass variation: a seedling age-dependent response

JOURNAL OF VEGETATION SCIENCE, Issue 3 2010
Ignacio M. Pérez-Ramos
Abstract Question: What is the relative importance of seed mass and abiotic factors in species-specific seedling growth and morphology during the first and the second growing season? How do oak species respond along gradients of these factors? Location: Mediterranean oak forest in southern Spain. Methods: We analysed seedling growth components and morphology of three co-occurring Quercus species (two deciduous and one evergreen). Oak seeds with a wide variety of sizes were sown along broad gradients of abiotic conditions. Intra- and inter-specific differences were evaluated by calibrating maximum likelihood estimators of seedling growth during the first two years of life. Results: We found multiple resources and conditions affecting seedling morphology and biomass allocation. However, the integrative variables of seedling growth , total aboveground biomass and relative growth rate (RGR) , were affected by two main factors: seed mass and light conditions. The relative contribution of these two factors depended strongly on seedling age. Seed mass explained most of the growth and morphological variables during the first year, while light conditions were the best predictor in the second growing season. In contrast, soil factors did not play an important role in seedling growth. We found some evidence of regeneration niche partitioning between oak species along the light gradient, a reflection of their distribution patterns as adults at the study site. Conclusions: We conclude that inter-specific differences in seedling growth, arising from seed size variability and microsite heterogeneity, could be of paramount importance in oak species niche segregation, driving stand dynamics and composition along environmental gradients. [source]


Photosynthetic Acclimation to Simultaneous and Interacting Environmental Stresses Along Natural Light Gradients: Optimality and Constraints

PLANT BIOLOGY, Issue 3 2004
ü. Niinemets
Abstract: There is a strong natural light gradient from the top to the bottom in plant canopies and along gap-understorey continua. Leaf structure and photosynthetic capacities change close to proportionally along these gradients, leading to maximisation of whole canopy photosynthesis. However, other environmental factors also vary within the light gradients in a correlative manner. Specifically, the leaves exposed to higher irradiance suffer from more severe heat, water, and photoinhibition stresses. Research in tree canopies and across gap-understorey gradients demonstrates that plants have a large potential to acclimate to interacting environmental limitations. The optimum temperature for photosynthetic electron transport increases with increasing growth irradiance in the canopy, improving the resistance of photosynthetic apparatus to heat stress. Stomatal constraints on photosynthesis are also larger at higher irradiance because the leaves at greater evaporative demands regulate water use more efficiently. Furthermore, upper canopy leaves are more rigid and have lower leaf osmotic potentials to improve water extraction from drying soil. The current review highlights that such an array of complex interactions significantly modifies the potential and realized whole canopy photosynthetic productivity, but also that the interactive effects cannot be simply predicted as composites of additive partial environmental stresses. We hypothesize that plant photosynthetic capacities deviate from the theoretical optimum values because of the interacting stresses in plant canopies and evolutionary trade-offs between leaf- and canopy-level plastic adjustments in light capture and use. [source]


Structural acclimation and radiation regime of silver fir (Abies alba Mill.) shoots along a light gradient

PLANT CELL & ENVIRONMENT, Issue 3 2003
A. CESCATTI
ABSTRACT Shoot architecture has been investigated using the ratio of mean shoot silhouette area to total needle area ( ) as a structural index of needle clumping in shoot space, and as the effective extinction coefficient of needle area. Although can be used effectively for the prediction of canopy gap fraction, it does not provide information about the within-shoot radiative regime. For this purpose, the estimation of three architectural properties of the shoots is required: needle area density, angular distribution and spatial aggregation. To estimate these features, we developed a method based on the inversion of a Markov three-dimensional interception model. This approach is based on the turbid medium approximation for needle area in the shoot volume, and assumes an ellipsoidal angular distribution of the normals to the needle area. Observed shoot dimensions and silhouette areas for different vertical and azimuth angles (AS) are used as model inputs. The shape coefficient of the ellipsoidal distribution (c) and the Markov clumping index (,0) are estimated by a least square procedure, in order to minimize the differences between model prediction and measurements of AS. This methodology was applied to silver fir (Abies alba Mill.) shoots collected in a mixed fir,beech,spruce forest in the Italian Alps. The model worked effectively over the entire range of shoot morphologies: c ranged from 1 to 8 and ,0 from 0·3 to 1 moving from the top to the base of the canopy. Finally, the shoot model was applied to reconstruct the within-shoot light regime, and the potential of this technique in upscaling photosynthesis to the canopy level is discussed. [source]


Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles

PLANT CELL & ENVIRONMENT, Issue 12 2000
T. C. Vogelmann
ABSTRACT Profiles of chlorophyll fluorescence were measured in spinach leaves irradiated with monochromatic light. The characteristics of the profiles within the mesophyll were determined by the optical properties of the leaf tissue and the spectral quality of the actinic light. When leaves were infiltrated with 10,4M DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethyl-urea] or water, treatments that minimized light scattering, irradiation with 2000 ,mol m,2 s,1 green light produced broad Gaussian-shaped fluorescence profiles that spanned most of the mesophyll. Profiles for chlorophyll fluorescence in the red (680 ± 16 nm) and far red (, > 710 nm) were similar except that there was elevated red fluorescence near the adaxial leaf surface relative to far red fluorescence. Fluorescence profiles were narrower in non-infiltrated leaf samples where light scattering increased the light gradient. The fluorescence profile was broader when the leaf was irradiated on its adaxial versus abaxial surface due to the contrasting optical properties of the palisade and spongy mesophyll. Irradiation with blue, red and green monochromatic light produced profiles that peaked 50, 100 and 150 ,m, respectively, beneath the irradiated surface. These results are consistent with previous measurements of the light gradient in spinach and they agree qualitatively with measurements of carbon fixation under monochromatic blue, red and green light. These results suggest that chlorophyll fluorescence profiles may be used to estimate the distribution of quanta that are absorbed within the leaf for photosynthesis. [source]


Fine-scale environmental variation and structure of understorey plant communities in two old-growth pine forests

JOURNAL OF ECOLOGY, Issue 2 2003
Lee E. Frelich
Summary 1Although it is well established that nitrogen and light play major roles in structuring plant communities across the landscape, it is not as clear how they structure communities within forest stands. Virtually nothing is known about within-stand structure of understorey communities of herbs and small shrubs in near-boreal forests. 2We tested the hypothesis that fine-scale (5,20 m) variability in N and light structure forest-floor plant communities in two old-growth mixed Pinus resinosa and Pinus strobus forests in north-eastern Minnesota, USA. 3In each forest, all trees > 1.4 m tall were mapped on a 0.75,1.0 ha area. A grid of subplots 5,10 m apart was established (total n = 147), and N mineralization (µg g,1 soil day,1), soil depth (cm), light (% canopy openness), and percentage cover of all herbs and small shrubs were measured on each subplot. 4Cluster analysis showed that the dominant understorey species fall into three groups. Group 1 is unrelated to N and light, and is negatively associated with a midstorey of the small tree Acer rubrum and the most abundant tall shrub Corylus cornuta. Group 2 reaches maximum abundance in places (mostly gaps) with relatively high light, but is unrelated to within-stand variation in N availability. Group 3 consists of a single species, Aster macrophyllus, and reaches maximum abundance in areas with low N availability and low abundance of Corylus, but higher than average abundance of P. strobus and Betula papyrifera overstorey trees. 5N and light have a moderate influence on understorey plant community structure. The plant species do arrange themselves along N and light gradients, but the gradients are likely to be too narrow to allow the degree of differentiation seen at the landscape level. Spatial patterning of the species groups is probably influenced by other factors, including disturbance history, chance and neighbourhood effects such as clonal reproduction. [source]


Signal Transfer in Haloarchaeal Sensory Rhodopsin, Transducer Complexes,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2008
Jun Sasaki
Membrane-inserted complexes consisting of two photochemically reactive sensory rhodopsin (SR) subunits flanking a homodimer of a transducing protein subunit (Htr) are used by halophilic archaea for sensing light gradients to modulate their swimming behavior (phototaxis). The SR,Htr complexes extend into the cytoplasm where the Htr subunits bind a his-kinase that controls a phosphorylation system that regulates the flagellar motors. This review focuses on current progress primarily on the mechanism of signal relay within the SRII,HtrII complexes from Natronomonas pharaonis and Halobacterium salinarum. The recent elucidation of a photoactive site steric trigger crucial for signal relay, advances in understanding the role of proton transfer from the chromophore to the protein in SRII activation, and the localization of signal relay to the membrane-embedded portion of the SRII,HtrII interface, are beginning to produce a clear picture of the signal transfer process. The SR,Htr complexes offer unprecedented opportunities to resolve first examples of the chemistry of signal relay between membrane proteins at the atomic level, which would provide a major contribution to the general understanding of dynamic interactions between integral membrane proteins. [source]


Photosynthetic Acclimation to Simultaneous and Interacting Environmental Stresses Along Natural Light Gradients: Optimality and Constraints

PLANT BIOLOGY, Issue 3 2004
ü. Niinemets
Abstract: There is a strong natural light gradient from the top to the bottom in plant canopies and along gap-understorey continua. Leaf structure and photosynthetic capacities change close to proportionally along these gradients, leading to maximisation of whole canopy photosynthesis. However, other environmental factors also vary within the light gradients in a correlative manner. Specifically, the leaves exposed to higher irradiance suffer from more severe heat, water, and photoinhibition stresses. Research in tree canopies and across gap-understorey gradients demonstrates that plants have a large potential to acclimate to interacting environmental limitations. The optimum temperature for photosynthetic electron transport increases with increasing growth irradiance in the canopy, improving the resistance of photosynthetic apparatus to heat stress. Stomatal constraints on photosynthesis are also larger at higher irradiance because the leaves at greater evaporative demands regulate water use more efficiently. Furthermore, upper canopy leaves are more rigid and have lower leaf osmotic potentials to improve water extraction from drying soil. The current review highlights that such an array of complex interactions significantly modifies the potential and realized whole canopy photosynthetic productivity, but also that the interactive effects cannot be simply predicted as composites of additive partial environmental stresses. We hypothesize that plant photosynthetic capacities deviate from the theoretical optimum values because of the interacting stresses in plant canopies and evolutionary trade-offs between leaf- and canopy-level plastic adjustments in light capture and use. [source]


Spatial distribution of leaf water-use efficiency and carbon isotope discrimination within an isolated tree crown

PLANT CELL & ENVIRONMENT, Issue 10 2001
X. Le Roux
Abstract The spatial variations in the stable carbon isotope composition (,13C) of air and leaves (total matter and soluble sugars) were quantified within the crown of a well-watered, 20-year-old walnut tree growing in a low-density orchard. The observed leaf carbon isotope discrimination (,) was compared with that computed by a three-dimensional model simulating the intracanopy distribution of irradiance, transpiration and photosynthesis (previously parameterized and tested for the same tree canopy) coupled to a biophysically based model of carbon isotope discrimination. The importance of discrimination associated with CO2 gradients encountered from the substomatal sites to the carboxylation sites was evaluated. We also assessed by simulation the effect of current irradiance on leaf gas exchange and the effect of long-term acclimation of photosynthetic capacity and stomatal and internal conductances to light regime on intracanopy gradients in ,. The main conclusions of this study are: (i) leaf , can exhibit important variations (5 and 8, in total leaf material and soluble sugars, respectively) along light gradients within the foliage of an isolated tree; (ii) internal conductance must be taken into account to adequately predict leaf ,, and (iii) the spatial variations in , and water-use efficiency resulted from the short-term response of leaf gas exchange to variations in local irradiance and, to a much lesser extent, from the long-term acclimation of leaf characteristics to the local light regime. [source]