Life-long Immunosuppression (life-long + immunosuppression)

Distribution by Scientific Domains


Selected Abstracts


Immunosuppressive drug-free operational immune tolerance in human kidney transplant recipients: Part I. blood gene expression statistical analysis

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008
Christophe Braud
Abstract Survival of solid organ grafts depends on life-long immunosuppression, which results in increased rates of infection and malignancy. Induction of tolerance to allografts would represent the optimal solution for controlling both chronic rejection (CR) and side effects of immunosuppression. Although spontaneous "operational tolerance" can occur in human kidney transplantation, the lack of noninvasive peripheral blood biological markers of this rare phenomenon precludes the identification of potentially tolerant patients in whom immunosuppression could be tapered as well as the development of new tolerance inducing strategies. Here, the potential of high throughput microarray technology to decipher complex pathologies allowed us to study the peripheral blood specific gene expression profile and corresponding EASE molecular pathways associated to operational tolerance in a cohort of human kidney graft recipients. In comparison with patients with CR, tolerant patients displayed a set of 343 differentially expressed genes, mainly immune and defense genes, in their peripheral blood mononuclear cells (PBMC), of which 223 were also different from healthy volunteers. Using the expression pattern of these 343 genes, we were able to classify correctly >80% of the patients in a cross-validation experiment and classified correctly all of the samples over time. Collectively, this study identifies a unique PBMC gene signature associated with human operational tolerance in kidney transplantation by a classical statistical microarray analysis and, in the second part, by a nonstatistical analysis. J. Cell. Biochem. 103: 1681,1692, 2008. © 2007 Wiley-Liss, Inc. [source]


Review article: the current management of acute liver failure

ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 3 2010
D. G. N. CRAIG
Aliment Pharmacol Ther,31, 345,358 Summary Background, Acute liver failure is a devastating clinical syndrome with a persistently high mortality rate despite critical care advances. Orthotopic liver transplantation (OLT) is a life-saving treatment in selected cases, but effective use of this limited resource requires accurate prognostication because of surgical risks and the requirement for subsequent life-long immunosuppression. Aim, To review the aetiology of acute liver failure, discuss the evidence behind critical care management strategies and examine potential treatment alternatives to OLT. Methods, Literature review using Ovid, PubMed and recent conference abstracts. Results, Paracetamol remains the most common aetiology of acute liver failure in developed countries, whereas acute viral aetiologies predominate elsewhere. Cerebral oedema is a major cause of death, and its prevention and prompt recognition are vital components of critical care support, which strives to provide multiorgan support and ,buy time' to permit either organ regeneration or psychological and physical assessment prior to acquisition of a donor organ. Artificial liver support systems do not improve mortality in acute liver failure, whilst most other interventions have limited evidence bases to support their use. Conclusion, Acute liver failure remains a truly challenging condition to manage, and requires early recognition and transfer of patients to specialist centres providing intensive, multidisciplinary input and, in some cases, OLT. [source]


Recipient Dendritic Cells, But Not B Cells, Are Required Antigen-Presenting Cells for Peripheral Alloreactive CD8+ T-Cell Tolerance

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 3 2010
J. L. Mollov
Induction of mixed allogeneic chimerism is a promising approach for achieving donor-specific tolerance, thereby obviating the need for life-long immunosuppression for solid organ allograft acceptance. In mice receiving a low dose (3Gy) of total body irradiation, allogeneic bone marrow transplantation combined with anti-CD154 tolerizes peripheral CD4 and CD8 T cells, allowing achievement of mixed chimerism with specific tolerance to donor. With this approach, peripheral CD8 T-cell tolerance requires recipient MHC class II, CD4 T cells, B cells and DCs. Recipient-type B cells from chimeras that were tolerant to donor still promoted CD8 T-cell tolerance, but their role could not be replaced by donor-type B cells. Using recipients whose B cells or DCs specifically lack MHC class I and/or class II or lack CD80 and CD86, we demonstrate that dendritic cells (DCs) must express CD80/86 and either MHC class I or class II to promote CD8 tolerance. In contrast, B cells, though required, did not need to express MHC class I or class II or CD80/86 to promote CD8 tolerance. Moreover, recipient IDO and IL-10 were not required. Thus, antigen presentation by recipient DCs and not by B cells is critical for peripheral alloreactive CD8 T cell tolerance. [source]


Has Time Come for New Goals in Human Islet Transplantation?

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 6 2008
R. Lehmann
The enthusiasm regarding clinical islet transplantation has been dampened by the long-term results. Concerns about the associated risks of life-long immunosuppression and the striking imbalance between potential recipients and available donor pancreata warrant changes in some of the current goals. Islet transplantation will never be a cure of type 1 diabetes in the majority of patients with no secondary complications, but is a valid option for a limited number of patients with brittle diabetes waiting for an organ or after organ transplantation. Furthermore, insulin independence should not be the main goal of islet transplantation, but avoidance of severe hypoglycemia and good glycemic control, which can be achieved with a relatively small functional beta-cell mass. Therefore, initially one islet infusion is sufficient. Retransplantation at a later time point remains an option, if glucose control deteriorates. Efforts to improve islet transplantation should no longer focus on islet isolation and immunosuppression, but rather on the low posttransplant survival rate of islets caused by activation of the coagulation pathway and the limited oxygen delivery to the islets. Transplantation of smaller islets be it naturally small or size tailored reaggregated islets has the potential to facilitate these processes. [source]