Lithospheric Mantle (lithospheric + mantle)

Distribution by Scientific Domains


Selected Abstracts


Variation of crustal thickness in the Philippine Sea deduced from three-dimensional gravity modeling

ISLAND ARC, Issue 3 2007
Takemi Ishihara
Abstract Crustal thickness of the northern to central Philippine Sea was gravimetrically determined on the simple assumption of four layers: seawater, sediments, crust and lithospheric mantle, with densities of 1030, 2300, 2800 and 3300 kg/m3, respectively. As for the correction of the regional gravity variation, a 15 km difference of the lithospheric thickness with a density difference of 50 kg/m3 against the asthenosphere below between both sides of the Kyushu-Palau Ridge was taken into consideration. Mantle Bouguer anomalies were calculated on the assumption of constant crustal thickness of 6 km, and then the crustal thickness was obtained by three-dimensional gravity inversion method. The results show occurrence of thin crust areas with a thickness of approximately 5 km in the southern part and at the western margin of the Shikoku Basin and also of thick crust areas in the northwestern and northeastern parts of the Parece Vela Basin. We suggest that these are because of the variation of magma supply at the time of sea floor spreading in the Shikoku and Parece Vela Basins, which is possibly related to the variation of spreading rate and enhanced magmatism near the past arc volcanic fronts. The results further show the occurrence of crust thinner than 5 km in the northeastern part of the West Philippine Basin, of crust thicker than 15 km in the Amami Plateau, the Daito and Oki-Daito Ridges, and also in the northern part of Kyushu-Palau Ridge, whereas the southern part of the Kyushu-Palau Ridge the crust is thicker than 10 km. It was also inferred that small basins in the Daito Ridge province have the thinnest oceanic crust of less than 5 km in the Kita-Daito Basin. [source]


Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea

ISLAND ARC, Issue 4 2002
SEONG HEE CHOI
Abstract Ultramafic xenoliths in alkali basalts from Jeju Island, Korea, are mostly spinel lherzolites with subordinate amounts of spinel harzburgites and pyroxenites. The compositions of major oxides and compatible to moderately incompatible elements of the Jeju peridotite xenoliths suggest that they are residues after various extents of melting. The estimated degrees of partial melting from compositionally homogeneous and unfractionated mantle to form the residual xenoliths reach 30%. However, their complex patterns of chondrite-normalized rare earth element, from light rare earth element (LREE)-depleted through spoon-shaped to LREE-enriched, reflect an additional process. Metasomatism by a small amount of melt/fluid enriched in LREE followed the former melt removal, which resulted in the enrichment of the incompatible trace elements. Sr and Nd isotopic ratios of the Jeju xenoliths display a wide scatter from depleted mid-oceanic ridge basalt (MORB)-like to near bulk-earth estimates along the MORB,oceanic island basalt (OIB) mantle array. The varieties in modal proportions of minerals, (La/Yb)N ratio and Sr-Nd isotopes for the xenoliths demonstrate that the lithospheric mantle beneath Jeju Island is heterogeneous. The heterogeneity is a probable result of its long-term growth and enrichment history. [source]


Continental basalts in the accretionary complexes of the South-west Japan Arc: Constraints from geochemical and Sr and Nd isotopic data of metadiabase

ISLAND ARC, Issue 1 2000
Hiroo Kagami
Abstract The Ryoke Belt is one of the important terranes in the South-west Japan Arc (SJA). It consists mainly of late Cretaceous granitoid rocks, meta-sedimentary rocks (Jurassic accretionary complexes) and mafic rocks (gabbros, metadiabases; late Permian,early Jurassic). Initial ,Sr (+ 25, + 59) and ,Nd (, 2.1,,5.9) values of the metadiabases cannot be explained by crustal contamination but reflect the values of the source material. These values coincide with those of island arc basalt (IAB), active continental margin basalt (ACMB) and continental flood basalt (CFB). Spiderdiagrams and trace element chemistries of the metadiabases have CFB-signature, rather than those of either IAB or ACMB. The Sr,Nd isotope data, trace element and rare earth element chemistries of the metadiabases indicate that they result from partial melting of continental-type lithospheric mantle. Mafic granulite xenoliths in middle Miocene volcanic rocks distributed throughout the Ryoke Belt were probably derived from relatively deep crust. Their geochemical and Sr,Nd isotopic characteristics are similar to the metadiabases. This suggests that rocks, equivalent geochemically to the metadiabases, must be widely distributed at relatively deep crustal levels beneath a part of the Ryoke Belt. The geochemical and isotopic features of the metadiabases and mafic granulites from the Ryoke Belt are quite different from those of mafic rocks from other terranes in the SJA. These results imply that the Ryoke mafic rocks (metadiabase, mafic granulite) were not transported from other terranes by crustal movement but formed in situ. Sr,Nd isotopic features of late Cretaceous granitoid rocks occurring in the western part of the Japanese Islands are coincident with those of the Ryoke mafic rocks. Such an isotopic relation between these two rocks suggests that a continental-type lithosphere is widely represented beneath the western part of the Japanese Islands. [source]


Controls on low-pressure anatexis

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2006
C. C. GERBI
Abstract Low-pressure anatexis, whereby rocks melt in place after passing through the andalusite stability field, develops under more restricted conditions than does low-pressure metamorphism. Our thermal modelling and review of published work indicate that the following mechanisms, operating alone, may induce anatexis in typical pelitic rocks without inducing wholesale melting in the lower crust: (i) magmatic advection by pervasive flow; (ii) crustal-scale detachment faulting; and (iii) the presence of a high heat-producing layer. Of these, only magmatic advection by pervasive flow and crustal-scale detachment faulting have been shown quantitatively to provide sufficient heat to cause widespread melting. Combinations of the above mechanisms with pluton-scale magmatic advection, shear heating, removal of the lithospheric mantle, or with each other provide additional means of developing suitable high temperatures at shallow crustal levels to generate low-pressure anatexis. [source]


The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2005
J.-P. BURG
Abstract Thermal models for Barrovian metamorphism driven by doubling the thickness of the radiogenic crust typically meet difficulty in accounting for the observed peak metamorphic temperature conditions. This difficulty suggests that there is an additional component in the thermal budget of many collisional orogens. Theoretical and geological considerations suggest that viscous heating is a cumulative process that may explain the heat deficit in collision orogens. The results of 2D numerical modelling of continental collision involving subduction of the lithospheric mantle demonstrate that geologically plausible stresses and strain rates may result in orogen-scale viscous heat production of 0.1 to >1 ,W m,3, which is comparable to or even exceeds bulk radiogenic heat production within the crust. Thermally induced buoyancy is responsible for crustal upwelling in large domes with metamorphic temperatures up to 200 °C higher than regional background temperatures. Heat is mostly generated within the uppermost mantle, because of large stresses in the highly viscous rocks deforming there. This thermal energy may be transferred to the overlying crust either in the form of enhanced heat flow, or through magmatism that brings heat into the crust advectively. The amplitude of orogenic heating varies with time, with both the amplitude and time-span depending strongly on the coupling between heat production, viscosity and collision strain rate. It is argued that geologically relevant figures are applicable to metamorphic domes such as the Lepontine Dome in the Central Alps. We conclude that deformation-generated viscous dissipation is an important heat source during collisional orogeny and that high metamorphic temperatures as in Barrovian type metamorphism are inherent to deforming crustal regions. [source]


Neoproterozoic Mafic Dykes and Basalts in the Southern Margin of Tarim, Northwest China: Age, Geochemistry and Geodynamic Implications

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010
Chuanlin ZHANG
Abstract: Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block, NW China. Here we report the geochronology and systematic whole-rock geochemistry of the Neoproterozoic mafic dykes and basalts along the southern margin of Tarim. Our zircon U-Pb age, in combination with stratigraphic constraint on their emplacement ages, indicates that the mafic dykes were crystallized at ca. 802 Ma, and the basalt, possibly coeval with the ca. 740 Ma volcanic rocks in Quruqtagh in the northern margin of Tarim. Elemental and Nd isotope geochemistry of the mafic dykes and basalts suggest that their primitive magma was derived from asthenospheric mantle (OIB-like) and lithospheric mantle respectively, with variable assimilation of crustal materials. Integrating the data supplied in the present study and that reported previously in the northern margin of Tarim, we recognize two types of mantle sources of the Neoproterozoic mafic igneous rocks in Tarim, namely the matasomatized subcontinental lithospheric mantle (SCLM) in the northern margin and the long-term enriched lithospheric mantle and asthenospheric mantle in the southern margin. A comprehensive synthesis of the Neoproterozoic igneous rocks throughout the Tarim Block led to the recognition of two major episodes of Neoproterozoic igneous activities at ca. 820,800 Ma and ca. 780,740 Ma, respectively. These two episodes of igneous activities were concurrent with those in many other Rodinian continents and were most likely related to mantle plume activities during the break-up of the Rodinia. [source]


Geochronology and Geochemistry of Mafic Dikes from Hainan Island and Tectonic Implications

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009
CAO Jianjin
Abstract: In the present study, the major and trace element compositions, as well as Sr, Nd isotopic compositions and K-Ar age data in mafic dikes from Hainan Island, China, have been analyzed. Whole-rock K-Ar dating yielded a magmatic duration of 61,98 Ma for mafic dikes. Mafic dikes have a very high concentration of incompatible elements, for example, Ba, Rb, Sr, K, rare earth elements, and especially light rare earth elements (LREE), and negative anomalies of Nb, Ta, and Ti in the normalized trace element patterns. The initial 87Sr/86Sr ratios and ,Sr(t) of the mafic dikes are 0.70634,0.71193 and +27.7 to +112.2, respectively. In the 87Sr/86Sr versus ,Nd(t) diagram, the Hainan Island mafic dikes plot between fields for depleted mantle and enriched mantle type 2. All these characteristics show that the mantle (source region) of mafic dikes in this area experienced metasomatism by fluids relatively enriched in LREE and large ion lithophile elements. The genesis of Hainan Island mafic dikes is explained as a result of the mixing of asthenospheric mantle with lithospheric mantle that experienced metasomatism by the subduction of the Pacific Plate. This is different from the Hainan Island Cenozoic basalts mainly derived from depleted asthenospheric mantle, and possibly, minor metasomatised lithospheric mantle. This study suggests that the Mesozoic and Cenozoic lithospheric revolutions in Hainan Island can be divided into three stages: (1) the compression orogenesis stage before 98 Ma. The dominant factor during this stage is the subduction of the ancient Pacific Plate beneath this area. The lithospheric mantle changed into enriched mantle type 2 by metasomatism; (2) the thinning and extension stage during 61,98 Ma. The dominant factor during this stage is that the asthenospheric mantle invaded and corroded the lithospheric mantle; and (3) the large-scale thinning and extension stage after 61 Ma. The large-scale asthenospheric upwelling results in the strong erupting of Cenozoic basalts, large-scale thinning of the lithosphere, the southward translating and counterclockwise rotating of Hainan Island, and the opening of the South China Sea. [source]


Active Faulting Pattern, Present-day Tectonic Stress Field and Block Kinematics in the East Tibetan Plateau

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009
Yueqiao ZHANG
Abstract: This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10,14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2,4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7,9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and rheologically layered. The upper crust seems to be decoupled from the lower crust through a décollement zone at a depth of 15,20 km, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this décollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed. [source]


Geochemistry of the Cenozoic Potassic Volcanic Rocks in the West Kunlun Mountains and Constraints on Their Sources

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2004
ZHANG Zhaochong
Abstract, The geochemical characteristics of the Cenozoic volcanic rocks from the north Pulu, east Pulu and Dahongliutan regions in the west Kunlun Mountains are somewhat similar as a whole. However, the volcanic rocks from the Dahongliutan region in the south belt are geochemically distinguished from those in the Pulu region; Nd, 207Pb/204Pb and 208Pb/204Pb. Their trace elements and isotopic data suggest that they were derived from lithospheric mantle, consisting of biotite- and hornblende-bearing garnet lherzolite, which had undertaken metasomatism and enrichment. On the primitive mantle-normalized patterns, they display remarkably negative Nb and Ta anomalies, indicating the presence of early-stage subducted oceanic crust. The metasomatism and enrichment resulted from the fluid released from the crustal materials enclosed in the source region in response to the uplift of asthenospheric mantle. Based on the previous experiments it can be inferred that the thickness of the lithosphere ranges from 75 to 100 km prior to the generation of the magmas. However, the south belt differs from the north one by its thicker lithosphere and lower degree of partial melting. The different thickness of the lithosphere gives rise to corresponding variation of the degree of crustal contamination. The volcanic rocks in the south belt are much more influenced by crustal contamination. In view of the tectonic setting, the generation of potassic magmas is linked with the uplift of asthenosphere resulted from large-scale thinning of the lithosphere after the collision of Indian and Eurasian plates, whereas the thinning of the lithosphere may result from delamination. The potassic magmas mainly resulted from partial melting of lithosphere mantle caused by the uplift of asthenosphere. [source]