Liquid Mixing (liquid + mixing)

Distribution by Scientific Domains


Selected Abstracts


Liquid Dispersion in Large Diameter Bubble Columns, with and without Internals

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
Ann Forret
Abstract Liquid mixing has been studied in a 1 m diameter bubble column, with and without internals (vertical cooling tubes). The presence of internals significantly affects both large scale recirculation and local dispersion. The most common approach to model liquid mixing is the one-dimensional axial dispersion model, validated many times in small bubble columns without internals. This paper shows that this model is still appropriate to large columns, but without internals. A two-dimensional model, taking into account a radially dependent axial velocity profile, and both axial and radial dispersion, is required to account for the internals on liquid mixing. Le mélange du liquide dans une colonne à bulles de 1 m de diamètre a été étudié, avec et sans internes (tubes verticaux simulant des échangeurs de chaleur). La présence d'internes affecte de manière significative à la fois la recirculation globale du liquide ainsi que la dispersion locale. L'approche la plus couramment employée pour modéliser le mélange du liquide est le modèle de dispersion axiale mono dimensionnel, validé maintes fois pour les petites colonnes à bulles sans internes. Cet article montre que ce modèle reste valable pour les colonnes de grande taille, sans internes. Par contre, la prise en compte des effets des internes sur le mélange liquide passe par l'utilisation d'un modèle bidimensionnel, prenant en compte le profile radiale de la vitesse axiale ainsi que les dispersions axiale et radiale. [source]


Hyperchaotic signal generation via DSP for efficient perturbations to liquid mixing

INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 1 2009
Zhong Zhang
Abstract This paper presents the design, simulation, hardware implementation and an application in liquid mixing of some hyperchaotic circuits, based on the digital signal processing (DSP) technology. The hyperchaotic Chen's system is used as an example to show the system discretization and variable renormalization in the design process. Numerical simulation is given to verify the hardware signal generator. The implemented hardware of Chen's system generates outputs in good agreement with the numerical simulation. The hyperchaotic signal output from the DSP is applied to generate complex perturbations in liquid mixing experiments. Dye dispersion experiments show that the induced hyperchaotic motion effectively helps enhance the mixing homogeneity in the stirred-tank-based mixer in our laboratory. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Axial liquid mixing in high-pressure bubble columns

AICHE JOURNAL, Issue 8 2003
G. Q. Yang
Axial dispersion coefficients of the liquid phase in bubble columns at high pressure are investigated using the thermal dispersion technique. Water and hydrocarbon liquids are used as the liquid phase. The system pressure varies up to 10.3 MPa and the superficial gas velocity varies up to 0.4 cm/s, which covers both the homogeneous bubbling and churn-turbulent flow regimes. Experimental results show that flow regime, system pressure, liquid properties, liquid-phase motion, and column size are the main factors affecting liquid mixing. The axial dispersion coefficient of the liquid phase increases with an increase in gas velocity and decreases with increasing pressure. The effects of gas velocity and pressure on liquid mixing can be explained based on the combined mechanism of global liquid internal circulation and local turbulent fluctuations. The axial liquid dispersion coefficient also increases with increasing liquid velocity due to enhanced liquid-phase turbulence. The scale-up effect on liquid mixing reduces as the pressure increases. [source]


Liquid Dispersion in Large Diameter Bubble Columns, with and without Internals

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
Ann Forret
Abstract Liquid mixing has been studied in a 1 m diameter bubble column, with and without internals (vertical cooling tubes). The presence of internals significantly affects both large scale recirculation and local dispersion. The most common approach to model liquid mixing is the one-dimensional axial dispersion model, validated many times in small bubble columns without internals. This paper shows that this model is still appropriate to large columns, but without internals. A two-dimensional model, taking into account a radially dependent axial velocity profile, and both axial and radial dispersion, is required to account for the internals on liquid mixing. Le mélange du liquide dans une colonne à bulles de 1 m de diamètre a été étudié, avec et sans internes (tubes verticaux simulant des échangeurs de chaleur). La présence d'internes affecte de manière significative à la fois la recirculation globale du liquide ainsi que la dispersion locale. L'approche la plus couramment employée pour modéliser le mélange du liquide est le modèle de dispersion axiale mono dimensionnel, validé maintes fois pour les petites colonnes à bulles sans internes. Cet article montre que ce modèle reste valable pour les colonnes de grande taille, sans internes. Par contre, la prise en compte des effets des internes sur le mélange liquide passe par l'utilisation d'un modèle bidimensionnel, prenant en compte le profile radiale de la vitesse axiale ainsi que les dispersions axiale et radiale. [source]


Hairy Root Culture in a Liquid-Dispersed Bioreactor: Characterization of Spatial Heterogeneity

BIOTECHNOLOGY PROGRESS, Issue 3 2000
Gary R. C. Williams
A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3,4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems. [source]