Liquid Hydrocarbons (liquid + hydrocarbon)

Distribution by Scientific Domains


Selected Abstracts


Hydrogen Production via Autothermal Reforming of Diesel Fuel

FUEL CELLS, Issue 3 2004
J. Pasel
Abstract Hydrogen, for the operation of a polymer electrolyte fuel cell, can be produced by means of autothermal reforming of liquid hydrocarbons. Experiments, especially with ATR 4, which produces a molar hydrogen stream equivalent to an electrical power in the fuel cell of 3,kW, showed that the process should be preferably run in the temperature range between 700,° and 850,°. This ensures complete hydrocarbon conversion and avoids the formation of considerable amounts of methane and organic compounds in the product water. Experiments with commercial diesel showed promising results but insufficient long-term stability. Experiments concerning the ignition of the catalytic reaction inside the reformer proved that within 60,s after the addition of water and hydrocarbons the reformer reached 95% of its maximum molar hydrogen flow. Measurements, with respect to reformer start-up, showed that it takes approximately 7,min. to heat up the monolith to a temperature of 340,° using an external heating device. Modelling is performed, aimed at the modification of the mixing chamber of ATR Type 5, which will help to amend the homogeneous blending of diesel fuel with air and water in the mixing chamber. [source]


Effect of surfactants and liquid hydrocarbons on gas hydrate formation rate and storage capacity

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 8 2003
Zhigao Sun
Abstract Hydrate formation rate plays an important role in making hydrates for the storage and transport of natural gas. Micellar surfactant solutions were found to increase gas hydrate formation rate and storage capacity. With the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation reduced. Surfactants (an anionic surfactant, a non-ionic surfactant and their mixtures) and liquid hydrocarbons (cyclopentane and methylcyclohexane) were used to improve hydrate formation. The experiments of hydrate formation were carried out in the pressure range 3.69,6.82 MPa and the temperature range 274.05,277.55 K. The experimental pressures were kept constant during hydrate formation in each experimental run. The effect of anionic surfactant (sodium dodecyl sulphate (SDS)) on natural gas storage in hydrates is more pronounced compared to a non-ionic surfactant (dodecyl polysaccharide glycoside (DPG)). The induction time of hydrate formation was reduced with the presence of cyclopentane (CP). Cyclopentane and methylcyclohexane (MCH) could increase hydrate formation rate, but reduced hydrate storage capacity The higher methylcyclohexane concentration, the lower the hydrate storage capacity. Copyright © 2003 John Wiley & Sons, Ltd. [source]


HYDROCARBON POTENTIAL OF THE LATE CRETACEOUS GONGILA AND FIKA FORMATIONS, BORNU (CHAD) BASIN, NE NIGERIA

JOURNAL OF PETROLEUM GEOLOGY, Issue 4 2010
B. Alalade
The hydrocarbon potential of possible shale source rocks from the Late Cretaceous Gongila and Fika Formations of the Chad Basin of NE Nigeria is evaluated using an integration of organic geochemistry and palynofacies observations. Total organic carbon (TOC) values for about 170 cutting samples range between 0.5% and 1.5% and Rock-Eval hydrogen indices (HI) are below 100 mgHC/gTOC, suggesting that the shales are organically lean and contain Type III/IV kerogen. Amorphous organic matter (AOM) dominates the kerogen assemblage (typically >80%) although its fluorescence does not show a significant correlation with measured HI. Atomic H/C ratios of a subset of the samples indicate higher quality oil- to gas-prone organic matter (Type II-III kerogens) and exhibit a significant correlation with the fluorescence of AOM (r2= 0.86). Rock-Eval Tmax calibrated against AOM fluorescence, biomarker and aromatic hydrocarbon maturity data suggests a transition from immature (<435°C) to mature (>435°C) in the Fika Formation and mature to post-mature (>470°C) in the Gongila Formation. The low TOC values in most of the shales samples limit their overall source rock potential. The immature to early mature upper part of the Fika Formation, in which about 10% of the samples have TOC values greater than 2.0%, has the best oil generating potential. Oil would have been generated if such intervals had become thermally mature. On the basis of the samples studied here, the basin has potential for mostly gaseous rather than liquid hydrocarbons. [source]


Sedimentation History of Neogene Lacustrine Sediments of Su,eo,ka Bela Stena Based on Geochemical Parameters (Valjevo-Mionica Basin, Serbia)

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2008
AJNOVI, Aleksandra
Abstract: Sediments of the western part of the Valjevo-Mionica basin (Serbia) were examined both geochemically and mineralogically to explain, on the basis of their sedimentological characteristics, the causes of changes in their qualitative and quantitative composition. A total of 62 samples obtained from the drillhole at depths up to 400 m was investigated. Using correlation of the obtained data, six geochemical zones were defined, two of which being specially distinguished by their mineralogical, geochemical and sedimentological characteristics. The first one, upper zone A, consists of banded marlstones interbedded with clay and oil shales and is characterized by presence of analcite and searlesite. These minerals and very high contents of Na2O indicate sedimentation in alkaline conditions with increased salinity in arid climate. That provided pronounced water stratification, as well as higher bioproductivity in the basin and sedimentary organic matter preservation. Therefore, the zone A sediments are characterized by high organic matter contents of the type which provides good potential for production of liquid hydrocarbons. Another specific zone, zone F, contains sediments with very high MgO, K2O and Li concentrations. Their geochemical correlation, as well as almost complete absence of illite in this zone, indicates the presence of interstratified clay mineral type illite-saponite (lithium-bearing Mg-smectite). [source]