Home About us Contact | |||
Liquid Chromatography/electrospray Ionization (liquid + chromatography_ionization)
Terms modified by Liquid Chromatography/electrospray Ionization Selected AbstractsRapid structural determination of alkaloids in a crude extract of Stemona saxorum by high-performance liquid chromatography/electrospray ionization coupled with tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 23 2009Shu-Ying Peng The electrospray ionization (ESI) mass spectrometric behavior of five Stemona alkaloids, stemokerrin, oxystemokerrin, oxystemokerrilactone, oxystemokerrin N -oxide and stemokerrin N -oxide, was studied using an ESI tandem mass technique (MSn). These compounds, isolated from Stemonasaxorum endemic in Vietnam, represent a class of alkaloids containing a pyrido[1,2-a]azepine A,B-ring core with a 1-hydroxypropyl side chain attached to C-4. Their fragmentation pathways were elucidated by ESI-MSn results and the elemental composition of the major product ions was confirmed by accurate mass measurement. In order to rationalize some fragmentation pathways, the relative Gibbs free energies of some product ions were estimated using the B3LYP/6-31+G(d) method. Based on the ESI-MSn results of five reference compounds, a reversed-phase high-performance liquid chromatography with tandem mass spectrometry (RP-HPLC/MSn) method was developed for the characterization of Stemona alkaloids with a pyrido[1,2-a]azepine A,B-ring core from the extract of S. saxorum. A total of 41 components were rapidly identified or tentatively characterized, of which 12 compounds were identified as Stemona alkaloids with a pyrido[1,2-a]azepine A,B-ring core, including four new compounds. This method is convenient and sensitive, especially for minor components in complex natural product extracts. Copyright © 2009 John Wiley & Sons, Ltd. [source] Analysis of S -adenosylmethionine and related sulfur metabolites in bacterial isolates of Pseudomonas aeruginosa (BAA-47) by liquid chromatography/electrospray ionization coupled to a hybrid linear quadrupole ion trap and Fourier transform ion cyclotron resonance mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 21 2009Tommaso R. I. Cataldi A comprehensive and highly selective method for detecting in bacterial supernatants a modified sulfur nucleoside, S -adenosyl-L-methionine (SAM), and its metabolites, i.e., S -adenosylhomocysteine (SAH), adenosine (Ado), 5,-deoxy-5,-methylthioadenosine (MTA), adenine (Ade), S -adenosyl-methioninamine (dcSAM), homocysteine (Hcy) and methionine (Met), was developed. The method is based on reversed-phase liquid chromatography with positive electrospray ionization (ESI+) coupled to a hybrid linear quadrupole ion trap (LTQ) and 7-T Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). A gradient elution was employed with a binary solvent of 0.05,M ammonium formate at pH 4 and acetonitrile. The assay involves a simultaneous cleanup of cell-free bacterial broths by solid-phase extraction and trace enrichment of metabolites with a 50-fold concentration factor by using immobilized phenylboronic and anion-exchange cartridges. While the quantitative determination of SAM was performed using stable-isotope-labeled SAM-d3 as an internal standard, in the case of Met and Ade, Met- 13C and Ade- 15N2 were employed as isotope-labeled internal standards, respectively. This method enabled the identification of SAM and its metabolites in cell-free culture of Pseudomonasaeruginosa grown in Davis minimal broth (formulation without sulphur organic compounds), with routine sub-ppm mass accuracies (,0.27,±,0.68,ppm). The resulting contents of SCSS -SAM, SS -dcSAM, MTA, Ado and Met in the free-cell supernatant of P. aeruginosa was 56.4,±,2.1,nM, 32.2,±,2.2,nM, 0.91,±,0.10,nM, 19.6,±,1.2,nM and 1.93,±,0.02,µM (mean,±,SD, n,=,4 extractions), respectively. We report also the baseline separation (Rs ,1.5) of both diastereoisomeric forms of SAM (SCSS and SCRS) and dcSAM (SS and RS), which can be very useful to establish the relationship between the biologically active versus the inactive species, SCSS/SCRS and SS/RS of SAM and dcSAM, respectively. An additional confirmation of SAM-related metabolites was accomplished by a systematic study of their MS/MS spectra. Copyright © 2009 John Wiley & Sons, Ltd. [source] Characterization of isoquinoline alkaloids, diterpenoids and steroids in the Chinese herb Jin-Guo-Lan (Tinospora sagittata and Tinospora capillipes) by high-performance liquid chromatography/electrospray ionization with multistage mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 15 2006Yufeng Zhang This study sought to determine the primary components (isoquinoline alkaloids, diterpenoids and steroids) in crude extracts of the Chinese herb Jin-Guo-Lan, prepared from the roots of Tinospora sagittata and T. capillipes, by liquid chromatography/electrospray ionization multistage mass spectrometry coupled with diode-array detection (LC-DAD/ESI-MSn). After separation on a reversed-phase C18 column using gradient elution, positive and negative ESI-MS experiments were performed. In positive ion mode, the three types of compounds showed very different characteristic ions: strong [M]+ or [M+H]+ ions were observed for isoquinoline alkaloids; [M+NH4]+ and/or [M+HCO2]+ for diterpenoids; [M+HnH2O]+ (n=1,3) for steroids. These adduct ions and/or fragments were used to deduce the mass and categories of known and unknown components in crude extracts, and their structures were further confirmed by ESI-MSn in positive ion mode. Moreover, UV absorption peaks obtained from DAD provided useful functional group information to aid the MSn -based identification. As a result, 11 compounds were unambiguously identified by comparing with standard compounds and 13 compounds were tentatively identified or deduced according to their MSn data. Two of these compounds (13-hydroxycolumbamine and 13-hydroxyjatrorrhizine) were found to be new compounds and another one (13-hydroxypalmatine) was detected for the first time as a natural product. In addition, a [M·CH3H2O].+ ion in MS2 of [M]+ after in-source collision-induced dissociation was used to differentiate positional isomers of protoberberine alkaloids, columbamine and jatrorrhizine. Although the roots of T. sagittata and T. capillipes contain almost identical compounds, the content of the compounds in them is dramatically different, suggesting the necessity for further comparison of the bioactivities of the two species. Copyright © 2006 John Wiley & Sons, Ltd. [source] Use of high-performance liquid chromatography/electrospray ionization collision-induced dissociation mass spectrometry for structural identification of monohydroxylated progesteronesRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 23 2004Min-Jung Kang For the structural identification of monohydroxylated progesterones synthesized by microorganisms, a method was developed using a combination of high-performance liquid chromatography and electrospray ionization collision-induced dissociation mass spectrometry (HPLC/ESI-CIDMS). The retention times and MS/MS spectra of 11 different standards at 30,eV were collected and compared. The identification of D-ring-hydroxylated progesterones (15, -, 16, -, 17, - and 21-OH-P) using ESI-CIDMS was not possible. However, they were separated chromatographically using a 65:35 mixture of water and acetonitrile containing 0.5% acetic acid. The other hydroxylated progesterones (2, -, 6, -, 7, -, 9, -, 11, -, 11, -, and 19-OH-P) could be identified by comparison of eight fragments. The complete separation of 11 standards was achieved chromatographically. The developed assay was evaluated by the identification of monohydroxylated progesterones produced by CYP106A2 from Bacillus megaterium ATCC 13368. Copyright © 2004 John Wiley & Sons, Ltd. [source] On-line 2D-LC-ESI/MS/MS determination of rifaximin in rat serumBIOMEDICAL CHROMATOGRAPHY, Issue 11 2009R. Nageswara Rao Abstract A highly sensitive and selective on-line two-dimensional reversed-phase liquid chromatography/electrospray ionization,tandem mass spectrometry (2D-LC-ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D-LC-ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5,10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd. [source] Synthesis of benzofurazan derivatization reagents for carboxylic acids in liquid chromatography/electrospray ionization,tandem mass spectrometryBIOMEDICAL CHROMATOGRAPHY, Issue 11 2007Tomofumi Santa Abstract The applicability of benzofurazan derivatization regents to carboxylic acids analysis in LC/ESI-MS/MS (high-performance liquid chromatography/electrospray ionization tandem mass spectrometry) was examined. The product ion spectra of DAABD-AE {4-[2-(N,N -dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole}, DAABD-PZ {4-[2-(N,N -dimethylamino)ethylaminosulfonyl]-7- N -piperazino-2,1,3-benzoxadiazole}, DAABD-PiCZ {4-[4-carbazoylpiperidin-1-yl]-7-[2-(N,N -dimethylamino)ethylaminosulfonyl]-2,1,3-benzoxadiazole}, DAABD-ProCZ {4-[2-carbazoylpyrrolidin-1-yl]-7-[2-(N,N -dimethylamino) ethylaminosulfonyl]-2,1,3-benzoxadiazole} and DAABD-Apy {4-[2-(N,N -dimethylamino)ethylaminosulfonyl]-7-(3-aminopyrrolidin-1-yl)-2,1,3-benzoxadiazole}, and their acetylated compounds were obtained. An intense fragment ion at m/z 151 corresponding to (dimethylamino)ethylaminosulfonyl moiety was observed in each spectra, suggesting that these reagents were suitable for ESI-MS/MS analysis. DAABD-AE, DAABD-APy and DAABD-PZ were applied to the analysis of octanoic acid and it was found that DAABD-AE and DAABD-APy gave high signal intensity suitable for LC/ESI-MS/MS. Copyright © 2007 John Wiley & Sons, Ltd. [source] |