Home About us Contact | |||
Lipophilic
Terms modified by Lipophilic Selected AbstractsMicellar Structures of Hydrophilic/Lipophilic and Hydrophilic/Fluorophilic Poly(2-oxazoline) Diblock Copolymers in WaterMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 21 2008Ruzha Ivanova Abstract Amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers of 2-methyl-2-oxazoline (MOx) building the hydrophilic block and either 2-nonyl-2-oxazoline (NOx) for the hydrophobic or 2-(1H,1H,,2H,2H,-perfluorohexyl)-2-oxazoline (FOx) for the fluorophilic block were synthesized by sequential living cationic polymerization. The polymer amphiphiles form core/shell micelles in aqueous solution as evidenced using small-angle neutron scattering (SANS). Whereas the diblock copolymer micelles with a hydrophobic NOxn block are spherical, the micelles with the fluorophilic FOxn are slightly elongated, as observed by SANS and TEM. In water, the micelles with fluorophilic and lipophilic cores do not mix, but coexist. [source] Lipophilic methotrexate conjugates with glucose-lipoamino acid moieties: Synthesis and in vitro antitumor activityDRUG DEVELOPMENT RESEARCH, Issue 3 2001Rosario Pignatello Abstract To obtain methotrexate (MTX) derivatives with a balanced hydrolipophilic character, we synthesized a series of conjugates in which the drug was linked to lipoamino acid (LAA)-glucose residues (LAAG-MTX). These conjugates displayed increased solubility in polar media compared with the corresponding LAA-MTX conjugates previously described. In vitro biological testing of LAAG-MTX indicated that the introduction of the sugar moiety decreased the biological activity of these MTX conjugates. The tetradecyl derivative 6b, however, was effective in inhibiting the dihydrofolate reductase activity in vitro and showed an inhibitory effect on human lymphoblastoid cell growth. Drug Dev. Res. 52:454,461, 2001. © 2001 Wiley-Liss, Inc. [source] Lipophilic and hydrophilic moisturizers show different actions on human skin as revealed by cryo scanning electron microscopyEXPERIMENTAL DERMATOLOGY, Issue 11 2007Julia Caussin Abstract:, To study the mode of action of moisturizers on human skin, hydrophilic moisturizers in water and neat lipophilic moisturizers were applied on excised skin for 24 h at 32°C. Samples of the treated skin were subsequently visualized in a cryoscanning electron microscope. The stratum corneum (SC) appeared as a region of swollen corneocytes (the swollen region) sandwiched between two layers of relatively dry corneocytes (the upper and lower non-swelling regions respectively). Lipophilic moisturizers increased the water content of the SC, whereas hydrophilic moisturizers can also reduce the water content of the SC. When focusing on the effect of the moisturizers on the three different regions, it was observed that cells in the swelling region are most sensitive to the application of the moisturizers and that the change in SC thickness is most influenced by the change in the thickness of the swelling region. Summarizing, SC cells are not equally sensitive to moisturizer application: centrally located corneocytes are more sensitive than corneocytes in the upper and the lowest regions of the SC. [source] Lipophilic but not hydrophilic statins selectively induce cell death in gynaecological cancers expressing high levels of HMGCoA reductaseJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5 2010S. Kato Abstract Recent reports have suggested that statins induce cell death in certain epithelial cancers and that patients taking statins to reduce cholesterol levels possess lower cancer incidence. However, little is known about the mechanisms of action of different statins or the effects of these statins in gynaecological malignancies. The apoptotic potential of two lipophilic statins (lovastatin and simvastatin) and one hydrophilic statin (pravastatin) was assessed in cancer cell lines (ovarian, endometrial and cervical) and primary cultured cancerous and normal tissues. Cell viability was studied by MTS assays and apoptosis was confirmed by Western blotting of PARP and flow cytometry. The expressions of key apoptotic cascade proteins were analysed. Our results demonstrate that both lovastatin and simvastatin, but not pravastatin, selectively induced cell death in dose- and time-dependent manner in ovarian, endometrial and cervical cancers. Little or no toxicity was observed with any statin on normal cells. Lipophilic statins induced activation of caspase-8 and -9; BID cleavage, cytochrome C release and PARP cleavage. Statin-sensitive cancers expressed high levels of HMG-CoA reductase compared with resistant cultures. The effect of lipophilic statins was dependent on inhibition of enzymatic activity of HMG-CoA reductase since mevalonate pre-incubation almost completely abrogated the apoptotic effect. Moreover, the apoptotic effect involved the inhibition of synthesis of geranylgeranyl pyrophosphate rather than farnesyl pyrophosphate. In conclusion, lipophilic but not hydrophilic statins induce cell death through activation of extrinsic and intrinsic apoptotic cascades in cancerous cells from the human female genital tract, which express high levels of HMG-CoA reductase. These results promote further investigation in the use of lipophilic statins as anticancer agents in gynaecological malignancies. [source] Preferred Conformations of Peptides Containing tert -Leucine, a Sterically Demanding, Lipophilic ,-Amino Acid with a Quaternary Side-Chain C, AtomCHEMISTRY - A EUROPEAN JOURNAL, Issue 8 2005Fernando Formaggio Prof. Abstract Terminally protected homopeptides of tert -leucine, from the dimer to the hexamer, co-oligopeptides of tert -leucine in combination with ,-aminoisobutyric acid or glycine residues up to the hexamer level, and simple dipeptides representing known scaffolds for catalysts in asymmetric organic reactions were prepared by solution methods and fully characterized. The results of conformation analysis, performed by use of FT-IR absorption, NMR, CD, and X-ray diffraction techniques, indicate that this hydrophobic ,-amino acid with tetrasubstitution at the C, atom is structurally versatile. We show that it prefers extended or semiextended conformations, but can also be accommodated in folded structures, provided that these are biased by the presence of helicogenic residues. The current large-scale production of Tle, combined with its conformational preferences unravelled in this work, should make this bulky, hydrophobic, C, -trisubstituted ,-amino acid a regular building block of any strategy seeking to tailor peptides with improved catalytic and pharmacological properties. [source] A quantitative approach to probe the dependence and correlation of food-effect with aqueous solubility, dose/solubility ratio, and partition coefficient (Log P) for orally active drugs administered as immediate-release formulationsDRUG DEVELOPMENT RESEARCH, Issue 2 2005Brahma N. Singh Abstract The purpose of the present review was to systematically evaluate if aqueous solubility, dose/solubility ratio, and partition coefficient (Log P) could be used as useful parameters to quantitatively probe the dependence and correlation of in vivo food effects with these physicochemical properties of orally active drugs administered as immediate-release (IR) formulations. Mean AUC data obtained under fasted and fed states of over 100 structurally diverse orally active drugs with different physicochemical properties were obtained from the primary literature. Correlations of AUC ratio (Fed/Fasted) with aqueous solubility, dose/solubility ratio, and Log P were derived and statistically evaluated by Pearson's correlation test (two-tailed). A negative correlation was obtained between the logarithm of the aqueous solubility and the AUC ratio (r=,0.5982, N=93), whereas a positive correlation existed between AUC ratio and Log P (r=0.5147, N=110) and between AUC ratio and dose/solubility ratio (r=0.5511, N=87). All these correlations were significant (P<0.0001). Based on this study, the estimated range within which a drug is not expected to be significantly affected by food falls between 0.148,89.39 mg/ml for aqueous solubility and between 0.23,624 ml for the dose:solubility ratio. The corresponding range of Log P for expecting a lack of food-effect lies between ,1.13 and 2.98. Quantitatively, the effect of food was most pronounced for lipophilic, poorly water-soluble drugs (with only a few exceptions), irrespective of whether the drug is acidic, basic, or neutral. It is concluded that aqueous solubility, dose/solubility ratio, and partition coefficient can be used as useful parameters to probe the dependence and correlation of food-effect with these physicochemical parameters for immediate-release formulations. Drug Dev. Res. 65:55,75, 2005. © 2005 Wiley-Liss, Inc. [source] Influence of lipophilicity and stereochemistry at the C7 position on the cardioprotective and antioxidant effect of ginkgolides during rat heart ischemia and reperfusion,DRUG DEVELOPMENT RESEARCH, Issue 3 2005Ludovic Billottet Abstract The extent to which the cardioprotective effect of ginkgolides is related to their lipophilicity rather than to their anti-platelet activating factor (PAF) effect was addressed in isolated rat hearts submitted to ischemia and reperfusion. A new derivative of ginkgolide C (1), the 7-,- O -(4-methylphenyl) ginkgolide C (4) was synthesized and compared to 7- O -(4-methylphenyl) ginkgolide C (2) that had the same absolute configuration at C7 as 1 for its lipophilicity, anti-PAF activity, and cardioprotective and antioxidant effects. Using reversed-phase high-performance liquid chromatography HPLC, 4 and 2 were found to be significantly more lipophilic (i.e., log kw of 3.42±0.05 and 3.64±0.07, respectively) than 1 (1.15±0.03) and the strong PAF inhibitor ginkgolide B (GkB; 1.65±0.03). The anti-PAF activities (IC50 values in ,M) were 8.2, 17.1, and 2.2 for 4, 1, and GkB, respectively, while 2 was inactive. In preischemic and/or reperfused hearts perfused with ginkgolides at 0.7 ,M: (i) 2 and 4 were more efficient in improving postischemic hemodynamic and metabolic recovery than 1, (ii) a key-step in cardioprotection occurred during ischemia where 2 and 4 limited myocardial ATP depletion and contracture development, (iii) a strong anti-lipoperoxidant effect was observed with 2 and 4, but not 1. In vivo administration of 2 to rats (4 mg/kg/day for 20 days) was more effective than that of 1 regarding ischemic heart protection, suggesting a positive role for lipophilicity. It was concluded that a high lipophilicity is not an absolute prerequisite for a strong anti-PAF effect for ginkgolides, whereas it appears essential for cardioprotection. Drug Dev. Res. 64:157,171, 2005. © 2005 Wiley-Liss, Inc. [source] Surface Resistance and Potentiometric Response of Polymeric Membranes Doped with Nonionic SurfactantsELECTROANALYSIS, Issue 19 2004Liya Muslinkina Abstract The influence of lipophilic, electrically neutral surfactants added to the membrane on the ion transfer resistance between an aqueous sample and a polymeric ion-selective membrane has been studied by electric impedance spectroscopy and potentiometry. An increase in the surface resistance and a shift of the apparently super-Nernstian response to lower sample ion activities has been observed when using the nonpolar bis(2-ethylhexyl) sebacate as plasticizer. [source] Liposomes for entrapping local anesthetics: A liposome electrokinetic chromatographic studyELECTROPHORESIS, Issue 9 2010Jana Lokajová Abstract Bupivacaine is a lipophilic, long-acting, amide class local anesthetic commonly used in clinical practice to provide local anesthesia during surgical procedures. Several cases of accidental overdose with cardiac arrest and death have been reported since bupivacaine was introduced to human use. Recent case reports have suggested that Intralipid (Fresenius Kabi) is an effective therapy for cardiac toxicity from high systemic concentrations of, e.g. bupivacaine, even though the mechanism behind the interaction is not fully clear yet. Our long-term aim is to develop a sensitive, efficient, and non-harmful lipid-based formulation to specifically trap harmful substances in vivo. In this study, the in vitro interaction of local anesthetics (bupivacaine, prilocaine, and lidocaine) with Intralipid or lipid vesicles containing phosphatidylglycerol, phosphatidylcholine, cardiolipin, cholesterol, and N -palmitoyl- D - erythro -sphingosine (ceramide) was determined by liposome electrokinetic chromatography. The interactions were evaluated by calculating the retention factors and distribution constants. Atomic force microscopy measurements were carried out to confirm that the interaction mechanism was solely due to interactions between the analytes and the moving pseudostationary phase and not by interactions with a stationary lipid phase adsorbed to the fused-silica wall. The heterogeneity of the liposomes was also studied by atomic force microscopy. The liposome electrokinetic chromatography results demonstrate that there is higher interaction between the drugs and negatively charged liposome dispersion than with the commercial Intralipid dispersion. [source] Formation of copper complexes in landfill leachate and their toxicity to zebrafish embryosENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2000Jonathon K. Fraser Abstract Toxic metal organic complexeshavenot been found in natural waters, although someorganicacids form bioavailable lipophilic and metabolite-type metal complexes. Landfill leachates usually contain organic acids and in the urban environment these leachates, when mixed with storm waters containing Cu, could be a source of toxic Cu organic complexes in streams and estuaries. We investigated the formation of Cu complexes in the leachate from an active urban landfill and found that some of the complexes formed were toxic to zebrafish embryos. High and low nominal molecular weight (NMWT) fractions; >5,000 Da and <700 Da, of leachate both formed Cu complexes with almost identical Cu complexing characteristics but the toxicity was due solely to the low NMWT complexes formed in the <700 Da fraction. Chemical equilibrium modelling with MINTEQA2 and H and Cu complex conditional association constants and ligand concentrations obtained from pH and Cu titrations with a Cu ion-selective electrode and van den Berg,Ruzic analyses of the titration data was used to calculate the copper speciation in the embryo test solutions. This calculated speciation, which was confirmed by measurements of Cu2+ in the test solutions, enabled the toxicity due to the free Cu ion and to the Cu complexes to be distinguished. [source] Blood,brain barrier damage and brain penetration of antiepileptic drugs: Role of serum proteins and brain edemaEPILEPSIA, Issue 4 2009Nicola Marchi Summary Purpose:, Increased blood,brain barrier (BBB) permeability is radiologically detectable in regions affected by drug-resistant epileptogenic lesions. Brain penetration of antiepileptic drugs (AEDs) may be affected by BBB damage. We studied the effects of BBB damage on brain distribution of hydrophilic [deoxy-glucose (DOG) and sucrose] and lipophilic (phenytoin and diazepam) molecules. We tested the hypothesis that lipophilic and hydrophilic drug distribution is differentially affected by BBB damage. Methods:, In vivo BBB disruption (BBBD) was performed in rats by intracarotid injection of hyperosmotic mannitol. Drugs (H3-sucrose, 3H-deoxy-glucose, 14C-phenytoin, and C14-diazepam) or unlabeled phenytoin was measured and correlated to brain water content and protein extravasation. In vitro hippocampal slices were exposed to different osmolarities; drug penetration and water content were assessed by analytic and densitometric methods, respectively. Results:, BBBD resulted in extravasation of serum protein and radiolabeled drugs, but was associated with no significant change in brain water. Large shifts in water content in brain slices in vitro caused a small effect on drug penetration. In both cases, total drug permeability increase was greater for lipophilic than hydrophilic compounds. BBBD reduced the amount of free phenytoin in the brain. Discussion:, After BBBD, drug binding to protein is the main controller of total brain drug accumulation. Osmotic BBBD increased serum protein extravasation and reduced free phenytoin brain levels. These results underlie the importance of brain environment and BBB integrity in determining drug distribution to the brain. If confirmed in drug-resistant models, these mechanisms could contribute to drug brain distribution in refractory epilepsies. [source] Treatment of congestive heart failure , current status of use of digitoxinEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue S2 2001G. G. Belz Digitalis glycosides exert a positive inotropic effect, i.e. an increase in myocardial contractility associated with a prolongation of relaxation period, and glycosides lower the heart rate (negative chronotropic), impede stimulus conduction (negative dromotropic) and promote myocardial excitability (positive bathmotropic). They seem to influence the activities of both the vagal and the sympathetic systems. Digitalis glycosides that belong to different substance classes are closely comparable concerning pharmacodynamics but differ substantially in regard to pharmacokinetics. Digoxin and its derivatives are less lipophilic, show lower protein binding and shorter half-life, are mainly eliminated via the kidney and accumulate rather rapidly in cases of insufficient kidney function. Digitoxin is highly lipophilic and extensively bound to plasma proteins, has a longer half-life, is mainly eliminated in the metabolized state via urine and faeces and does not accumulate in kidney dysfunction. As a result of a more stable pharmacokinetic profile, the incidence of toxic side effects seems to be lower with digitoxin than with digoxin. Since the beginning of the 1990s, the antagonists of the RAAS qualified as the standard treatment for congestive heart failure, often in combination with diuretics, vasodilators or ,-antagonists. However, the important role of digitalis glycosides as therapeutic comedication or alternative was never denied, especially in atrial fibrillation with tachycardia. The PROVED and RADIANCE trials proved a detrimental effect of the withdrawal of digoxin therapy on exercise capacity, left-ventricular ejection fraction and clinical symptoms. The DIG trial revealed that digoxin comedication in sinus rhythm patients with congestive heart failure was associated with a lower morbidity (as taken from death or hospitalization because of worsening heart failure) and an unchanged overall mortality , being a unique feature among the available inotropic drugs. Comparable studies for digitoxin have not yet been performed but, because of its higher pharmacological stability, it might well be associated with even more advantages in this regard than digoxin. [source] PRECLINICAL STUDY: Disposition of ,9 tetrahydrocannabinol in CF1 mice deficient in mdr1a P-glycoproteinADDICTION BIOLOGY, Issue 3-4 2008Laurence Bonhomme-Faivre ABSTRACT P-glycoprotein (P-gp) plays a major role in drug efflux. All the transported substrates are more or less hydrophobic and amphiphatic in nature. Being lipophilic, ,9 tetrahydrocannabinol (THC), the main cannabis component, could be a potential P-gp substrate. The aim of this project was to determine the contribution of the mdr1a gene product to THC disposition. Therefore, oral THC and digoxin (substrate test for P-gp) pharmacokinetics have been investigated in the intestinal epithelium and in the brain capillary endothelium of CF1 mdr1a (,/,) mice (mice naturally deficient in P-gp). These pharmacokinetics were compared to THC and digoxin oral pharmacokinetics in wild type mice mdr1a (+/+) (not P-gp deficient). The application of Bailer's method showed that THC total exposure measured by the area under the plasma concentration time curve was 2.17-fold higher in CF1 mice naturally deficient in P-gp than in wild type mice after oral administration of 25 mg/kg of THC, and 2.4-fold higher after oral administration of 33 µg/kg of digoxin. As a consequence, the oral bioavailability of THC and digoxin was higher in naturally P-gp-deficient mice. We concluded that P-gp limits THC oral uptake and mediates direct drug excretion from the systemic circulation into the intestinal lumen. [source] Synthesis and In Vitro Evaluation of 2-Aminoquinazolin-4(3H)-one-Based Inhibitors for tRNA-Guanine Transglycosylase (TGT)HELVETICA CHIMICA ACTA, Issue 6 2004Emmanuel tRNA-Guanine transglycosylase (TGT) plays a key role in the post-transcriptional modification of tRNA. It has been linked with the pathogenicity of shigellae, the causative agents of bacillary dysentery (shigellosis). Here, we report structureactivity relationships (SARs) for a new series of 2-aminoquinazolin-4(3H)-one-based inhibitors of TGT, resulting from structure-based design (Fig.,2). Versatile synthetic protocols allow selective functionalization of the 2-aminoquinazolin-4(3H)-one core (Schemes,1,6) with H-bond-donor groups in position 6 (for H-bonding to the C=O group of Leu231) and lipophilic residues in position 8 for reaching into a shallow, newly discovered lipophilic pocket lined by Val282, Val45, and Leu68. The binding mode of several of these ligands in the active site of TGT was established by crystal structure analyses (Figs.,4 and 6). A dramatic S effect was observed, with the replacement of the S-atom in the (phenylsulfanyl)methyl residue in position 8 of inhibitor 1c (Ki=100,nM) by the O-atom (in 1h, Ki=5.6,,M) or CH2 (in 1i, Ki=3.6,,M), resulting in a massive loss of activity (Fig.,3). Crystal structure analysis showed that the lipophilic Me group points into a highly polar region of the active site encompassed by the side chains of Asp280 and Asp102 and collides directly (d(C,,,O)=3.1,Å) with one of the O-atoms of the carboxylate of Asp102. Similarly, lipophilic linkers departing from position 8 and orienting residues in the shallow hydrophobic pocket presumably encounter analogous unfavorable contacts, accounting for the modest contribution to the binding free enthalpy upon introduction of these residues. These findings provide a valuable starting point for future structure-based lead optimization cycles leading to TGT inhibitors with increased in vitro potency. [source] Lipophilic but not hydrophilic statins selectively induce cell death in gynaecological cancers expressing high levels of HMGCoA reductaseJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5 2010S. Kato Abstract Recent reports have suggested that statins induce cell death in certain epithelial cancers and that patients taking statins to reduce cholesterol levels possess lower cancer incidence. However, little is known about the mechanisms of action of different statins or the effects of these statins in gynaecological malignancies. The apoptotic potential of two lipophilic statins (lovastatin and simvastatin) and one hydrophilic statin (pravastatin) was assessed in cancer cell lines (ovarian, endometrial and cervical) and primary cultured cancerous and normal tissues. Cell viability was studied by MTS assays and apoptosis was confirmed by Western blotting of PARP and flow cytometry. The expressions of key apoptotic cascade proteins were analysed. Our results demonstrate that both lovastatin and simvastatin, but not pravastatin, selectively induced cell death in dose- and time-dependent manner in ovarian, endometrial and cervical cancers. Little or no toxicity was observed with any statin on normal cells. Lipophilic statins induced activation of caspase-8 and -9; BID cleavage, cytochrome C release and PARP cleavage. Statin-sensitive cancers expressed high levels of HMG-CoA reductase compared with resistant cultures. The effect of lipophilic statins was dependent on inhibition of enzymatic activity of HMG-CoA reductase since mevalonate pre-incubation almost completely abrogated the apoptotic effect. Moreover, the apoptotic effect involved the inhibition of synthesis of geranylgeranyl pyrophosphate rather than farnesyl pyrophosphate. In conclusion, lipophilic but not hydrophilic statins induce cell death through activation of extrinsic and intrinsic apoptotic cascades in cancerous cells from the human female genital tract, which express high levels of HMG-CoA reductase. These results promote further investigation in the use of lipophilic statins as anticancer agents in gynaecological malignancies. [source] QSAR study of ,-lactam antibiotic efflux by the bacterial multidrug resistance pump AcrB,JOURNAL OF CHEMOMETRICS, Issue 5 2004Márcia M. C. Ferreira Abstract AcrAB-TolC is the most important efflux pump system of Gram-negative bacteria, responsible for their resistance to lipophilic and amphilic drugs. In this work, HCA,PCA studies were performed to investigate the relationship between efflux activities (negative logarithm of minial inhibitor concentration, pMIC) of three strains of S. thypimurium with respect to ,-lactams, and to analyze the relationship between lipophilicity parameters calculated by different methods. The analyses demonstrate that pMICs strongly depend on properties of both bacterial strains and drug molecules, and that lipophilicity parameters do not necessarily contain the same information about the drugs. QSAR studies have shown that the calculated lipophilicities, in some cases, are non linearly related to the pMICs originated by active AcrAB-TolC bacterial pumps, due to the existence of ,-lactams with nitrogen- and sulfur-rich substituents. Among the most important ,-lactam molecular properties quantitatively related to pMICs are lipophilicity and electronic and hydrogen,bonding properties. Parameters describing these properties were included in the QSAR study to obtain parsimonius regression models for MICs. ,-Lactams were classified as good, moderately good and poor AcrAB-TolC substrates. Their stereoelectronic molecular properties, especially the Y-component of the molecular dipole moment and hydrogen binding properties, reflected this classification. Copyright © 2004 John Wiley & Sons, Ltd. [source] Heuristic molecular lipophilicity potential (HMLP): Lipophilicity and hydrophilicity of amino acid side chainsJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 6 2006Qi-Shi Du Abstract Heuristic molecular lipophilicity potential (HMLP) is applied in the study of lipophilicity and hydrphilcity of 20 natural amino acids side chains. The HMLP parameters, surface area Si, lipophilic indices Li, and hydrophilic indices Hi of amino acid side chains are derived from lipophilicity potential L(r). The parameters are correlated with the experimental data of phase-transferring free energies of vapor-to-water, vapor-to-cyclohexane, vapor-to-octanol, cyclohexane-to-water, octanol-to-water, and cyclohexane-to-octanol through a linear free energy equation ,G°tr,i = b0 + b1Si+ + b2Si, + b3Li + b4Hi. For all above six phase-transfer free energies, the HMLP parameters of 20 amino acid side chains give good calculation results using linear free energy equation. HMLP is an ab initio quantum chemical approach and a structure-based technique. Except for atomic van der Waals radii, there are no other empirical parameters used. The HMLP has clear physical and chemical meaning and provides useful lipophilic and hydrophilic parameters for the studies of proteins and peptides. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 685,692, 2006 [source] Synthesis and biodistribution of novel 99mTc-nitrido methylpiperidine dithioformate derivatives as potential brain imaging agentsJOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 6 2009Jie Lu Abstract Three dithioformate ligands with methyl substituted on the piperidine rings, potassium 1-(2-methylpiperidine-1-yl)-dithioformate (2-mp), potassium 1-(3-methylpiperidine-1-yl)-dithioformate (3-mp) and potassium 1-(4-methylpiperidine-1-yl)-dithioformate (4-mp) were synthesized. The corresponding 99mTc-nitrido complexes were prepared in high yield (>95%) through the [99mTcN] intermediate and characterized by thin layer chromatography and high-performance liquid chromatography. All the neutral 99mTc-nitrido complexes were stable under physiological conditions and lipophilic with log,P values between 1.40 and 1.58. In vivo biodistribution results showed that all the 99mTc-nitrido complexes displayed high brain uptakes and long retention times. Among them, 99mTcN-4mp, demonstrated the best properties for brain imaging with the brain uptake 3.40±0.24, 3.22±0.31, 2.72±0.28 and 2.22±0.18% ID/g at 5, 30, 60 and 120,min p.i., respectively. Moreover, the influence of stereochemistry of the 99mTcN complexes with methyl substitution on ortho, meta and para positions on piperidine ring on the biodistribution properties were investigated with B3LYP/6-31G*(LANL2DZ for Tc) method using the Gaussian 03 program package. Copyright © 2009 John Wiley & Sons, Ltd. [source] A pyrazolylamine-phosphonate monoester chelator for the fac -[M(CO)3]+ core (M = Re, 99mTc): synthesis, coordination properties and biological assessmentJOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 13 2007Elisa Palma Abstract Aiming to develop new strategies for the labeling of hydroxyl-containing biomolecules with the organometallic core fac -[99mTc(CO)3]+, we have prepared a new model bifunctional chelator, L4 (ethyl hydrogen (2-{[2-(3,5-dimethyl-1H -pyrazol-1-yl)ethyl]amino}ethyl)phosphonate), combining a pyrazolyl-amine chelating group and a monophosphonate ethyl ester function (,P(O)OHOEt). The phosphonate group allows metal stabilization, and, simultaneously, can be considered as a potential attachment site for a biomolecule. Reaction of L4 with the precursor [99mTc(H2O)3(CO)3]+ gave the model radiocomplex [99mTc(CO)3(k3 -L4)] (6a). This radiocomplex was identified by comparing its chromatographic profile with that of the corresponding Re analog (6) under the same conditions, also prepared and fully characterized by the usual analytical techniques. Radiocomplex 6a is moderately lipophilic (log Po/w = 1.07), presenting high stability in vitro without any measurable decomposition or ligand exchange, even in the presence of strong competing chelators such as histidine and cysteine (37°C, 24 h). Biodistribution studies of the complex in CD-1 mice indicated a rapid blood clearance, and a rapid clearance from main organs, occurring primarily through the hepatobiliary pathway. Complex 6a presents also a high robustness in vivo, demonstrated by its resistance to metabolic degradation in blood, and intact excretion into the urine, after RP-HPLC analysis of blood and urine samples. Copyright © 2007 John Wiley & Sons, Ltd. [source] Synthesis of lipophilic 2-oxoamides based on ,-aminobutyric and ,-aminovaleric analogues and their activity against phospholipase A2JOURNAL OF PEPTIDE SCIENCE, Issue 10 2007Panagiota Moutevelis-Minakakis Abstract A variety of lipophilic 2-oxoamides based on ,-aminobutyric and ,-aminovaleric analogues were synthesized. 2-oxoamides containing a tetrazole, a thioethyl or a thioacetyl group are weak inhibitors of GIVA cPLA2, while derivatives containing a methyl tetrazole, a diethyl phosphonate or a thioethyl group are weak inhibitors of GV sPLA2. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source] Colloidal soft matter as drug delivery systemJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2009Giulia Bonacucina Abstract Growing interest is being dedicated to soft matter because of its potential in delivering any type of drugs. Since hydrophilic, lipophilic, small and big molecules can be loaded into these colloidal systems and administered through the parenteral or nonparenteral route, soft matter systems have been used to solve many biomedical and pharmaceutical problems. In fact, they make possible to overcome difficulties in the formulation and delivery of poorly water-soluble drug molecules, settle some stability issues typical of biological drug molecules, design parenteral sustained release forms and provide functionalized soft particles that are very effective in drug targeting. This review deals with the important role that colloids play in the drug delivery and targeting, with particular attention to the more currently used systems such as microemulsions, organogels, liposomes, micelles, and dendrimers. Though significant progress has been made in drug targeting, some challenges still remain. Further efforts will be required to better understand the characteristics of targets and to discover new ones. In-depth knowledge of the physico-chemical structure and properties of the systems used for targeting is fundamental for understanding the mechanism of interaction with the biological substrate and the consequent drug release. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:1,42, 2009 [source] Blood,brain barrier efflux transportJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2003Pamela L. Golden Abstract Efflux transport at the blood,brain barrier (BBB) limits the brain tissue exposure to a variety of potential therapeutic agents, including compounds that are relatively lipophilic and would be predicted to permeate the endothelial lining of the brain microvasculature. Recent advances in molecular and cell biology have led to identification of several specific transport systems at the blood,brain interface. Refinement of classical pharmacokinetic experimentation has allowed assessment of the structural specificity of transporters, the impact of efflux transport on brain tissue exposure, and the potential for drug,drug interactions at the level of BBB efflux transport. The objective of this minireview is to summarize efflux transporter characteristics (location, specificity, and potential inhibition) for transport systems identified in the BBB. A variety of experimental approaches available to ascertain or predict the impact of efflux transport on net brain tissue uptake of substrates also are presented. The potential impact of efflux transport on the pharmacodynamics of agents acting in the central nervous system are illustrated. Finally, general issues regarding the role of identifying efflux transport as part of the drug development process are discussed. © 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:1739,1753, 2003 [source] Ester prodrugs of morphine improve transdermal drug delivery: a mechanistic studyJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2007Jhi-Joung Wang Two alkyl esters of morphine, morphine propionate (MPR) and morphine enanthate (MEN), were synthesized as potential prodrugs for transdermal delivery. The ester prodrugs could enhance transdermal morphine delivery. The mechanisms of this enhancing effect were elucidated in this study. Both prodrugs were more lipophilic than their parent drug as evaluated by the skin/vehicle partition coefficient (log P) and capacity factor (log K,). The in-vitro skin permeation of morphine and its prodrugs from pH 6 buffer was in the order of MEN > MPR > morphine. MPR and MEN respectively enhanced the transdermal delivery of morphine by 2- and 5-fold. A contrary result was observed when using sesame oil as the vehicle. The prodrugs were stable against chemical hydrolysis in an aqueous solution, but were readily hydrolysed to the parent drug when exposed to skin homogenate and esterase. Approximately 98% MPR and ,75% MEN were converted to morphine in an in-vitro permeation experiment. The viable epidermis/dermis contributed to a significant resistance to the permeation of ester prodrugs. According to the data of skin permeation across ethanol-, ,-terpineol-, and oleic acid-pretreated skin, MEN was predominantly transported via lipid bilayer lamellae in the stratum corneum. The intercellular pathway was not important for either morphine or MPR permeation. [source] Poly(L-lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I: physicochemical and stability studiesJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2002Montakarn Chittchang Low oral bioavailability of therapeutic peptides and proteins generally results from their poor permeability through biological membranes and enzymatic degradation in the gastrointestinal tract. Since different secondary structures exhibit different physicochemical properties such as hydrophobicity, size and shape, changing the secondary structure of a therapeutic polypeptide may be another approach to increasing its membrane permeation. Poly(L-lysine) was used as a model polypeptide. The objectives of this study were to induce secondary structural changes in poly(L-lysine) and to determine the time course over which a given conformer was retained. In addition, the hydrophobicity of each secondary structure of poly(L-lysine) was assessed. The circular dichroism (CD) studies demonstrated that the conditions employed could successfully induce the desired secondary structural changes in poly(L-lysine). The ,-helix conformer appeared to be more stable at 25° C whereas the ,-sheet conformer could be preserved at 37° C. On the other hand, the random coil conformer was retained at both temperatures. Significant losses of the ,-helix and the ,-sheet conformers were observed when the pH was reduced. The change in ionic strength did not affect any of the conformers. The octanol/buffer partitioning studies indicated that the ,-helix and the ,-sheet conformers exhibited significantly different (P< 0.05) hydrophobicities. In conclusion, variation of pH and temperature conditions can be used to induce secondary structural changes in poly(L-lysine). These changes are reversible when the stimuli are removed. The ,-helix and the ,-sheet conformers of poly(L-lysine) are more lipophilic than the native random coil conformer. Thus, poly(L-lysine) may represent an ideal model polypeptide with which to further investigate the effects of secondary structure on membrane diffusion or permeation. [source] Supramolecular control of spin-crossover phenomena in lipophilic Fe(II)-1,2,4-triazole complexesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 17 2006Keita Kuroiwa Abstract The spin-crossover properties of lipophilic, supramolecular Fe(II) complexes bridged by 4-(3-dodecyloxy)propyl-1,2,4-triazole [Fe(II)(1)3Cl2] were investigated in chloroform and cast films. A purple low-spin (LS) complex in a powdery form was transformed into pale yellow high-spin (HS) polymers by dissolution in chloroform. The formation of lipophilic molecular wires in chloroform was observed with transmission electron microscopy. The casting of chloroform solutions onto solid supports produced purple, transparent films (LS state). The cast films exhibited sluggish spin-crossover (LS , HS) behavior without thermal hysteresis. On the other hand, the cocasting of equimolar dodecanol or tetradecanol with Fe(II)(1)3Cl2 produced composite films in which alcohol molecules were bound to the complex by ionic hydrogen bonding (ROH···Cl,) and van der Waals interactions. At room temperature, the cast films exhibited regular lamellar structures before and after alcohol doping; this was confirmed by wide-angle X-ray diffraction measurements. Interestingly, the Fe(II)(1)3Cl2/CnOH (n = 12 or 14) ternary films showed a reversible abrupt spin crossover accompanied by thermal hysteresis. The observed bistability was related to dynamic structural transformations between lamellar and hexagonal structures. This study provides a novel supramolecular approach to designing spin-crossover polymer films with controlled thermal bistability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5192,5202, 2006 [source] Sulfur fertilization and light exposure during storage are critical determinants of the nutritional value of ready-to-eat friariello campano (Brassica rapa L. subsp. sylvestris)JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2009Giancarlo Barbieri Abstract BACKGROUND: The nutritional value of fresh vegetables can be affected at different steps within the field-to-market pipeline. Both pre- and post-harvest factors should be considered in order to increase the produce quality and to preserve it until final consumption. In this study the effects of sulfur nutrition during plant growth and light exposure during storage on the nutritional value of ready-to-eat friariello campano (Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort.) were studied. RESULTS: Fresh weight loss was higher in light-storage treatment. During storage, light exposure reduced leaf nitrate content, although no effect could be attributed to sulfur nutrition. Sulfur increased both lipophilic and hydrophilic antioxidant activity. The hydrophilic antioxidant activity linearly decreased during storage, whereas the lipophilic activity increased over time. However, no differences could be attributed to light exposure during storage for this parameter. Results on colorimetric indexes and their relation with the chlorophyll content are also reported. CONCLUSIONS: Ready-to-eat friariello quality may be improved with an enhanced antioxidant activity and reduced nitrate content by combining, respectively, increased sulfur availability during plant growth and exposure to light during storage. On the other hand, light exposure caused a more rapid decline in produce fresh weight during storage. Copyright © 2009 Society of Chemical Industry [source] Fluorescent imaging in a glioma model in vivoLASERS IN SURGERY AND MEDICINE, Issue 1 2001Dimitrios C. Nikas MD Abstract Background and Objective Nile blue dyes have been shown to have affinity for tumor tissue as compared to surrounding normal tissue and to be relatively non-toxic. We have employed EtNBA, a lipophilic, fluorescent benzophenoxazine dye, in a murine model to image subcutaneous and intracranial U-87 glioma implants. Study Design/Materials and Methods The imaging system used to detect fluorescence consists of a SIT video camera fitted with a zoom microscope-magnifying lens. The tumor was illuminated with a 632.8-nm diffuse beam from a helium,neon laser. The video image was processed using a Sony image processor to give real-time pseudocolor and enhanced black and white images. Results Following subcutaneous injection of the dye at doses of 2.5,5.0 mg/kg bw, we observed a gradual increase of the fluorescent signal from the tumor which peaked 1,3 hours post-injection with variable selectivity (typically 4:1) for tumor to normal surrounding tissues permitting the clear demarcation of the tumor. Conclusions The present in vivo study demonstrates that EtNBA is a safe and effective photodiagnostic agent, able to demarcate U87-MG solid tumors in mice on a real-time basis at a concentration of 2.5,5.0 mg/kg 1,3 hours after administration. Lasers Surg. Med. 29:11,17, 2001. © 2001 Wiley-Liss, Inc. [source] Clinical Pharmacology of OxymorphonePAIN MEDICINE, Issue 2009Howard S. Smith MD ABSTRACT Oxymorphone (14-hydroxydihydromorphinone) is primarily a potent ,-opioid receptor agonist with oral immediate-release (IR) and extended-release (ER) formulations approved in the United States in 2006. The oral oxymorphone formulations are roughly three times more potent than oral morphine. It is more lipophilic than morphine and, thus, may more easily cross the blood-brain barrier because it differs from morphine having a ketone-group substituent at the C-6 position. Oxymorphone IR is indicated for the relief of moderate,to severe pain, while oxymorphone ER is indicated for persistent pain. Initial doses (opioid-naïve) are 10,20 mg every 4,6 hours (IR) and 5 mg every 12 hours (ER). Oxymorphone was found not to have any clinically significant cytochrome (CYP)3A4, CPY2C9, or CYP2D6 interactions, thus limiting its potential for causing some of the more common drug,drug interactions via the CYP450 system. The common adverse effects of oxymorphone are consistent with those commonly seen with other opioid, including nausea/vomiting, constipation, pruritis, pyrexia, somnolence, and sedation. [source] Fluorescence Kinetics of Protoporphyrin-IX Induced from 5-ALA Compounds in Rabbit Postballoon Injury Model for ALA-PhotoangioplastyPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2008Oh-Choon Kwon Protoporphyrin IX (PpIX) is one of the photodynamically active substances that are endogenously synthesized in the metabolic pathway for heme as a precursor. Aminolevulinic acid-esters are more lipophilic than conventional 5-aminolevulinic acid (ALA) and some of them are currently being approved as new drugs for photodynamic diagnosis (PDD) and photodynamic therapy (PDT). In order to investigate the pharmacokinetics of ALA and ALA-ethyl ester (ALA-ethyl) in the atheromatous plaque and normal aortic wall of rabbit postballoon injured artery, each 60 mg kg,1 of ALA or ALA-ethyl was injected intravenously followed by serial detection of PpIX fluorescence of harvested arteries at 0,48 h post-injection. Maximum PpIX build-up in the atheromatous plaque was seen at 2 h after injecting ALA. In contrast, it occurred at 9 h after injecting ALA-ethyl. In addition, the selective build-up of ALA in the atheromatous plaque compared to normal vessel wall was much higher (10 times) than that of ALA-ethyl. The time of maximum fluorescence intensity of PpIX was employed as drug-light-interval for subsequent PDT treatment of the atheromatous plaque with 50,150 J cm,1 of light dose. Significant reduction in plaque was observed without damage of the medial wall at both groups, but smooth muscle cell (SMC) was still present in the media region below the PDT-treated atheromatous plaque. In conclusion, ALA may be a more effective compound for endovascular PDT treatment of the atheromatous plaque compared with ALA-ethyl based on their pharmacokinetics, but further optimization of PDT methodology remains to remove completely residual SMC in the media for preventing potential restenosis. [source] Protoporphyrin IX Fluorescence Kinetics and Localization after Topical Application of ALA Pentyl Ester and ALA on Hairless Mouse Skin with UVB-Induced Early Skin CancerPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2000Johanna T. H. M. van den Akker ABSTRACT In order to improve the efficacy of 5-aminolevulinic acid-based (ALA) photodynamic therapy (PDT), different ALA derivatives are presently being investigated. ALA esters are more lipophilic and therefore may have better skin penetration properties than ALA, possibly resulting in enhanced protoporphyrin IX (PpIX) production. In previous studies it was shown that ALA pentyl ester (ALAPE) does considerably enhance the PpIX production in cells in vitro compared with ALA. We investigated the in vivo PpIX fluorescence kinetics after application of ALA and ALAPE to hairless mice with and without UVB-induced early skin cancer. ALA and ALAPE (20% wt/wt) were applied topically to the mouse skin and after 30 min, the solvent was wiped off and PpIX fluorescence was followed in time with in vivo fluorescence spectroscopy and imaging. At 6 and 12 h after the 30 min application, skin samples of visible lesions and adjacent altered skin (UVB-exposed mouse skin) and normal mouse skin were collected for fluorescence microscopy. From each sample, frozen sections were made and phase contrast images and fluorescence images were recorded. The in vivo fluorescence kinetics showed that ALAPE induced more PpIX in visible lesions and altered skin of the UVB-exposed mouse skin, but not in the normal mouse skin. In the microscopic fluorescence images, higher ALAPE-induced PpIX levels were measured in the stratum corneum, but not in the dysplastic layer of the epidermis. In deeper layers of the skin, PpIX levels were the same after ALA and ALAPE application. In conclusion, ALAPE does induce higher PpIX fluorescence levels in vivo in our early skin cancer model, but these higher PpIX levels are not located in the dysplastic layer of the epidermis. [source] |