Ligand Structure (ligand + structure)

Distribution by Scientific Domains


Selected Abstracts


ChemInform Abstract: Effect of Ligand Structure on the Zinc-Catalyzed Henry Reaction.

CHEMINFORM, Issue 49 2002
(-)-Arbutamine., Asymmetric Syntheses of (-)-Denopamine
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Aluminum(III) Porphyrins as Ionophores for Fluoride Selective Polymeric Membrane Electrodes

ELECTROANALYSIS, Issue 6 2006
Jeremy
Abstract Aluminum(III) porphyrins are examined as potential fluoride selective ionophores in polymeric membrane type ion-selective electrodes. Membranes formulated with Al(III) tetraphenyl (TPP) or octaethyl (OEP) porphyrins are shown to exhibit enhanced potentiometric selectivity for fluoride over more lipophilic anions, including perchlorate and thiocyanate. However, such membrane electrodes display undesirable super-Nernstian behavior, with concomitant slow response and recovery times. By employing a sterically hindered Al(III) picket fence porphyrin (PFP) complex as the membrane active species, fully reversible and Nernstian response toward fluoride is achieved. This finding suggests that the super-Nernstian behavior observed with the nonpicket fence metalloporphyrins is due to the formation of aggregate porphyrin species (likely dimers) within the membrane phase. The steric hindrance of the PFP ligand structure eliminates such chemistry, thus leading to theoretical response slopes toward fluoride. Addition of lipophilic anionic sites into the organic membranes enhances response and selectivity, indicating that the Al(III) porphyrin ionophores function as charged carrier type ionophores. Optimized membranes formulated with Al(III)-PFP in an o -nitrophenyloctyl ether plasticized PVC film exhibit fast response to fluoride down to 40,,M, with very high selectivity over SCN,, ClO4,, Cl,, Br, and NO3, (kpot<10,3 for all anions tested). With further refinements in the membrane chemistry, it is anticipated that Al(III) porphyrin-based membrane electrodes can exhibit potentiometric fluoride response and selectivity that approaches that of the classical solid-state LaF3 crystal-based fluoride sensor. [source]


Pseudo-Octahedral Schiff Base Nickel(II) Complexes: Does Single Oxidation Always Lead to the Nickel(III) Valence Tautomer?

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 27 2008
Olaf Rotthaus
Abstract With the aim of establishing correlations between the ligand structure and the oxidation site in nickel complexes from Schiff base ligands, five ligands and their nickel complexes have been synthesized. The prototypical asymmetric Schiff base ligand HL1 contains both phenol and pyridine pendant arms with a pivotal imine nitrogen atom. Ligands HL2,5 differ from HL1 by either their phenolate para substituent, the hybridization of the pivotal nitrogen atom, and/or the N-donor properties of the pyridine moiety. The five complexes [Ni(L1,5)2] are obtained by treating the corresponding ligands with 0.5 equiv. of Ni(OAc)2·4H2O in the presence of NEt3. X-ray crystal-structure diffraction studies as well as DFT calculations reveal that [Ni(L1,5)2] involves a high-spin nickel(II) ion within a pseudo-octahedral geometry. The two ligands are arranged in a meridional fashion when the pivotal nitrogen atom is an imine {as in [Ni(L1,2)2] and [Ni(L4,5)2]}, while the fac isomer is preferred in [Ni(L3)2] (amino pivotal nitrogen atom). [Ni(L1)2] is characterized by an oxidation potential at ,0.17 V vs. Fc+/Fc. The one-electron-oxidized species [Ni(L1)2]+ exhibits an EPR signal at g = 2.21 attributed to a phenoxyl radical that is antiferromagnetically coupled to a high-spin NiII ion. [Ni(L2)2] differs from [Ni(L1)2] by the phenolate para substituent (a tert -butyl instead of the methoxyl group) and exhibits an oxidation potential that is ca. 0.16 V higher. Compared to [Ni(L1)2]+ the cation [Ni(L2)2]+ exhibits a SOMO that is more localized on the metal atom. The EPR and electrochemical signatures of [Ni(L3)2]+ are similar to those of [Ni(L1)2]+, thus showing that an imino to amino substitution compensates for a methoxy to tert -butyl one. Replacement of the pyridine by a quinoline group in [Ni(L4,5)2] makes the complexes slightly harder to oxidize. The EPR signatures of the cations [Ni(L4,5)2]+ are roughly similar to those of the pyridine analogs [Ni(L1,2)2]+. The oxidation site is thus not significantly affected by changes in the N-donor properties of the terminal imino nitrogen atom.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Fully quantum mechanical energy optimization for protein,ligand structure

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 12 2004
Yun Xiang
Abstract We present a quantum mechanical approach to study protein,ligand binding structure with application to a Adipocyte lipid-binding protein complexed with Propanoic Acid. The present approach employs a recently develop molecular fractionation with a conjugate caps (MFCC) method to compute protein,ligand interaction energy and performs energy optimization using the quasi-Newton method. The MFCC method enables us to compute fully quantum mechanical ab initio protein,ligand interaction energy and its gradients that are used in energy minimization. This quantum optimization approach is applied to study the Adipocyte lipid-binding protein complexed with Propanoic Acid system, a complex system consisting of a 2057-atom protein and a 10-atom ligand. The MFCC calculation is carried out at the Hartree,Fock level with a 3-21G basis set. The quantum optimized structure of this complex is in good agreement with the experimental crystal structure. The quantum energy calculation is implemented in a parallel program that dramatically speeds up the MFCC calculation for the protein,ligand system. Similarly good agreement between MFCC optimized structure and the experimental structure is also obtained for the streptavidin,biotin complex. Due to heavy computational cost, the quantum energy minimization is carried out in a six-dimensional space that corresponds to the rigid-body protein,ligand interaction. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1431,1437, 2004 [source]


High molar mass ethene/1-olefin copolymers synthesized with acenaphthyl substituted metallocene catalysts

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 1 2008
Erkki Aitola
Abstract The influence of ligand structure on copolymerization properties of metallocene catalysts was elucidated with three C1 -symmetric methylalumoxane (MAO) activated zirconocene dichlorides, ethylene(1-(7, 9)-diphenylcyclopenta-[a]-acenaphthadienyl-2-phenyl-2-cyclopentadienyl)ZrCl2 (1), ethylene(1-(7, 9)-diphenylcyclopenta-[a]-acenaphthadienyl-2-phenyl-2-fluorenyl)ZrCl2 (2), and ethylene(1-(9)-fluorenyl-(R)1-phenyl-2-(1-indenyl)ZrCl2 (3). Polyethenes produced with 1/MAO had considerable, ca. 10% amount of trans -vinylene end groups, resulting from the chain end isomerization prior to the chain termination. When ethene was copolymerized with 1-hexene or 1-hexadecene using 1/MAO, molar mass of the copolymers varied from high to moderate (531,116 kg/mol) depending on the comonomer feed. At 50% comonomer feed, ethene/1-olefin copolymers with high hexene or hexadecene content (around 10%) were achievable. In the series of catalysts, polyethenes with highest molar mass, up to 985 kg/mol, were obtained with sterically most crowded 2/MAO, but the catalyst was only moderately active to copolymerize higher olefins. Catalyst 3/MAO produced polyethenes with extremely small amounts of trans -vinylene end groups and relatively low molar mass 1-hexene copolymers (from 157 to 38 kg/mol) with similar comonomer content as 1. These results indicate that the catalyst structure, which favors chain end isomerization, is also capable to produce high molar mass 1-olefin copolymers with high comonomer content. In addition, an exceptionally strong synergetic effect of the comonomer on the polymerization activity was observed with catalyst 3/MAO. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 373,382, 2008 [source]


Co-Metal-Free Enantioselective Conjugate Addition Reactions of Zinc Reagents

CHEMISTRY - A EUROPEAN JOURNAL, Issue 36 2008
Sefer Ay Dipl.-Chem.
Abstract Asymmetric conjugate addition of diethylzinc to cinnamaldehyde in a co-metal-free fashion by using N,O-ligands with planar and central chirality is described. Different modulations of the ligand structure, including several combinations of the chiral units, indicate that a [2.2]paracyclophane backbone is essential for the activity and the enantioselectivity of the generated active catalyst. By using the optimized ligand, an isolated yield of 90,% was obtained with up to 99,%,ee. [source]


Exploring the primary electron acceptor (QA)-site of the bacterial reaction center from Rhodobacter sphaeroides

FEBS JOURNAL, Issue 4 2002
Binding mode of vitamin K derivatives
The functional replacement of the primary ubiquinone (QA) in the photosynthetic reaction center (RC) from Rhodobacter sphaeroides with synthetic vitamin K derivatives has provided a powerful tool to investigate the electron transfer mechanism. To investigate the binding mode of these quinones to the QA binding site we have determined the binding free energy and charge recombination rate from QA, to D+ (kAD) of 29 different 1,4-naphthoquinone derivatives with systematically altered structures. The most striking result was that none of the eight tested compounds carrying methyl groups in both positions 5 and 8 of the aromatic ring exhibited functional binding. To understand the binding properties of these quinones on a molecular level, the structures of the reaction center-naphthoquinone complexes were predicted with ligand docking calculations. All protein,ligand structures show hydrogen bonds between the carbonyl oxygens of the quinone and AlaM260 and HisM219 as found for the native ubiquinone-10 in the X-ray structure. The center-to-center distance between the naphthoquinones at QA and the native ubiquinone-10 at QB (the secondary electron acceptor) is essentially the same, compared to the native structure. A detailed analysis of the docking calculations reveals that 5,8-disubstitution prohibits binding due to steric clashes of the 5-methyl group with the backbone atoms of AlaM260 and AlaM249. The experimentally determined binding free energies were reproduced with an rmsd of ,,4 kJ·mol,1 in most cases providing a valuable tool for the design of new artificial electron acceptors and inhibitors. [source]


Connectivity and binding-site recognition: Applications relevant to drug design

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 15 2010
Christopher J. R. Illingworth
Abstract Here, we describe a family of methods based on residue,residue connectivity for characterizing binding sites and apply variants of the method to various types of protein,ligand complexes including proteases, allosteric-binding sites, correctly and incorrectly docked poses, and inhibitors of protein,protein interactions. Residues within ligand-binding sites have about 25% more contact neighbors than surface residues in general; high-connectivity residues are found in contact with the ligand in 84% of all complexes studied. In addition, a k-means algorithm was developed that may be useful for identifying potential binding sites with no obvious geometric or connectivity features. The analysis was primarily carried out on 61 protein,ligand structures from the MEROPS protease database, 250 protein,ligand structures from the PDBSelect (25%), and 30 protein,protein complexes. Analysis of four proteases with crystal structures for multiple bound ligands has shown that residues with high connectivity tend to have less variable side-chain conformation. The relevance to drug design is discussed in terms of identifying allosteric-binding sites, distinguishing between alternative docked poses and designing protein interface inhibitors. Taken together, this data indicate that residue,residue connectivity is highly relevant to medicinal chemistry. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010 [source]


Bis(,-enaminoketonato) vanadium (III or IV) complexes as catalysts for olefin polymerization

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2010
Ji-Qian Wu
Abstract Bis(,-enaminoketonato) vanadium(III) complexes (2a,c) [O(R1)CC(H)xC(R2)NC6H5]2VCl(THF) and the corresponding vanadium(IV) complexes (3a,c) [O(R1)CC(H)xC(R2) NC6H5]2VO (R1 = (CH2)4, R2 = H, x = 0, a; R1 = C6H5, R2 = H, x = 1, b; R1 = C6H5, R2 = C6H5, x = 1, c) have been synthesized from VCl3(THF)3 and VOCl2(THF)2, respectively, by treating with 2.0 equivalent ,-enaminoketonato ligands in tetrahydrofuran. Structures of 2b and 3a,c were further confirmed by X-ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a,c and 3a,c exhibited high catalytic activities (up to 23.76 kg of PE/mmolV h bar), and afforded polymers with unimodal molecular weight distributions at 70 °C indicating the good thermal stability. The catalytic behaviors were influenced not only by the oxidation state of the catalyst precursors but also by the ligand structures. Complexes 2a,c and 3a,c were also effective catalyst precursors for ethylene/1-hexene copolymerization. The influence of polymerization parameters such as reaction temperature, Al/V molar ratio and hexene feed concentration on the ethylene/hexene copolymerization behaviors have bee also investigated in detail. In addition, the agents such as AlMe3, AliBu3, MeMgBr, MgCl2, and ZnEt2 were applied to control the molecular weight and molecular weight distribution modal. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3062,3072, 2010 [source]


A new tetradentate ligand for atom transfer radical polymerization

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2004
Shijie Ding
Abstract The properties of a ligand, including molecular structure and substituents, strongly affect the catalyst activity and control of the polymerization in atom transfer radical polymerization (ATRP). A new tetradentate ligand, N,N,-bis(pyridin-2-ylmethyl-3-hexoxo-3-oxopropyl)ethane-1,2-diamine (BPED) was synthesized and examined as the ligand of copper halide for ATRP of styrene (St), methyl acrylate (MA), and methyl methacrylate (MMA), and compared with other analogous linear tetrdendate ligands. The BPED ligand was found to significantly promote the activation reaction: the CuBr/BPED complex reacted with the initiators so fast that a large amount of Cu(II)Br2/BPED was produced and thus the polymerizations were slow for all the monomers. The reaction of CuCl/BPED with the initiator was also fast, but by reducing the catalyst concentration or adding CuCl2, the activation reaction could be slowed to establish the equilibrium of ATRP for a well-controlled living polymerization of MA. CuCl/BPED was found very active for the polymerization of MA. For example, 10 mol% of the catalyst relatively to the initiator was sufficient to mediate a living polymerization of MA. The CuCl/BPED, however, could not catalyze a living polymerization of MMA because the resulting CuCl2/BPED could not deactivate the growing radicals. The effects of the ligand structures on the catalysis of ATRP are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3553,3562, 2004 [source]


NMR analysis of novel ganglioside GM4 analogues containing de- N -acetyl and lactamized sialic acid: probes for searching new ligand structures for human L-selectin

MAGNETIC RESONANCE IN CHEMISTRY, Issue 8 2002
Toshiyuki Hamada
Abstract Detailed analysis of the 1H and 13C NMR spectra of two novel ganglioside GM4 analogues de- N -acetyl sialyl GM4 (1) and cyclic sialyl GM4 (2), which contain de- N -acetyl and lactamized sialic acid, respectively, instead of the usual N -acetylneuraminic acid, was carried out. The combination of NMR data, such as cyclization shifts, coupling pattern, intraresidual NOEs and the appearance of NH proton, provided the 5, 2B conformation for 2. Moreover, the conformation of a glycosidic bond connecting the Neu and Gal residues was determined by some interresidual NOEs in both 1 and 2. Copyright © 2002 John Wiley & Sons, Ltd. [source]