Home About us Contact | |||
Ligand Dissociation (ligand + dissociation)
Selected AbstractsAllosteric modulation of anti-HIV drug and ferric heme binding to human serum albuminFEBS JOURNAL, Issue 24 2005Alessio Bocedi Human serum albumin (HSA), the most prominent protein in plasma, is best known for its exceptional capacity to bind ligands (e.g. heme and drugs). Here, binding of the anti-HIV drugs abacavir, atazanavir, didanosine, efavirenz, emtricitabine, lamivudine, nelfinavir, nevirapine, ritonavir, saquinavir, stavudine, and zidovudine to HSA and ferric heme,HSA is reported. Ferric heme binding to HSA in the absence and presence of anti-HIV drugs was also investigated. The association equilibrium constant and second-order rate constant for the binding of anti-HIV drugs to Sudlow's site I of ferric heme,HSA are lower by one order of magnitude than those for the binding of anti-HIV drugs to HSA. Accordingly, the association equilibrium constant and the second-order rate constant for heme binding to HSA are decreased by one order of magnitude in the presence of anti-HIV drugs. In contrast, the first-order rate constant for ligand dissociation from HSA is insensitive to anti-HIV drugs and ferric heme. These findings represent clear-cut evidence for the allosteric inhibition of anti-HIV drug binding to HSA by the heme. In turn, anti-HIV drugs allosterically impair heme binding to HSA. Therefore, Sudlow's site I and the heme cleft must be functionally linked. [source] A Density Functional Theory Study of the Stille Cross-Coupling via Associative Transmetalation.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 6 2007Coordinating Solvents, The Role of Ligands Abstract An associative mechanism has been computationally characterized for the Stille cross-coupling of vinyl bromide and trimethylvinylstannane catalyzed by PdL2 (L=PMe3, AsMe3) with or without dimethylformamide as coordinating ligand. All the species along the catalytic cycles that start from both the cis - and the trans -PdL(Y)(vinyl)Br complexes (Y=L or S; L=PMe3, AsMe3 or PH3; S=DMF) have been located in the gas phase and in the presence of polar solvents. Computations support the central role of species trans -PdL(DMF)(vinyl)Br which react by ligand dissociation and stannane coordination in the rate-limiting transmetalation step via a puckered four-coordinate (at palladium) transition state comprised of Pd, Br, Sn and sp2 C atoms. A donating solvent may enter the catalytic cycle assisting isomerization of cis -PdL2(vinyl)Br to trans -PdL(DMF)(vinyl)Br complexes via a pentacoordinate square pyramidal Pd intermediate. In keeping with experimental observations, the activation energies of the catalytic cycles with arsines as Pd ligands are lower than those with phosphines. Polytopal rearrangements from the three-coordinate T-shaped Pd complexes resulting from transmetalation account for the isomerization and the CC bond formation on the reductive elimination step. [source] Ligand Influence on Metathesis Activity of Ruthenium Carbene Catalysts: A DFT StudyADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1-2 2007Bernd Abstract A survey of the concept of active and inactive ligand conformations in ruthenium alkene carbene complexes of the Grubbs catalyst type is presented. This concept is extended to a variety of anionic ligand atoms. Density functional theory calculations at the B3LYP/LACV3P**+//B3LYP/LACVP* level of theory were performed on the precatalyst, 14 valence-electron intermediate, alkene carbene conformers and ruthena(IV)cyclobutane model intermediates for several ligands, such as methoxide, methanethiolate, fluoride, mesylate, water, and ammonia. The rule of the superiority of metathesis catalysts with small and electron-withdrawing halogens does not apply to fluoride ligands. Alkoxides and thiolates also destabilize active carbene conformations, while mesylate ligands lead to a balanced energetic relation of active and inactive carbene orientations. Cationic ruthenium carbene species with aqua or ammine ligands are limited by unfavored ligand dissociation to 14 valence-electron intermediates. A guideline for the design of novel ligand systems for ruthenium carbene complexes as metathesis catalysts is proposed. [source] CO migration pathways in cytochrome P450cam studied by molecular dynamics simulationsPROTEIN SCIENCE, Issue 5 2007Liliane Mouawad Abstract Previous laser flash photolysis investigations between 100 and 300 K have shown that the kinetics of CO rebinding with cytochrome P450cam(camphor) consist of up to four different processes revealing a complex internal dynamics after ligand dissociation. In the present work, molecular dynamics simulations were undertaken on the ternary complex P450cam(cam)(CO) to explore the CO migration pathways, monitor the internal cavities of the protein, and localize the CO docking sites. One trajectory of 1 nsec with the protein in a water box and 36 trajectories of 1 nsec in the vacuum were calculated. In each trajectory, the protein contained only one CO ligand on which no constraints were applied. The simulations were performed at 200, 300, and 320 K. The results indicate the presence of seven CO docking sites, mainly hydrophobic, located in the same moiety of the protein. Two of them coincide with xenon binding sites identified by crystallography. The protein matrix exhibits eight persistent internal cavities, four of which corresponding to the ligand docking sites. In addition, it was observed that water molecules entering the protein were mainly attracted into the polar pockets, far away from the CO docking sites. Finally, the identified CO migration pathways provide a consistent interpretation of the experimental rebinding kinetics. [source] Two Distinct Mechanisms of Alkyne Insertion into the Metal,Sulfur Bond: Combined Experimental and Theoretical Study and Application in CatalysisCHEMISTRY - A EUROPEAN JOURNAL, Issue 7 2010Valentine Abstract The present study reports the evidence for the multiple carbon,carbon bond insertion into the metal,heteroatom bond via a five-coordinate metal complex. Detailed analysis of the model catalytic reaction of the carbon,sulfur (CS) bond formation unveiled the mechanism of metal-mediated alkyne insertion: a new pathway of CS bond formation without preliminary ligand dissociation was revealed based on experimental and theoretical investigations. According to this pathway alkyne insertion into the metal,sulfur bond led to the formation of intermediate metal complex capable of direct CS reductive elimination. In contrast, an intermediate metal complex formed through alkyne insertion through the traditional pathway involving preliminary ligand dissociation suffered from "improper" geometry configuration, which may block the whole catalytic cycle. A new catalytic system was developed to solve the problem of stereoselective SS bond addition to internal alkynes and a cost-efficient Ni-catalyzed synthetic procedure is reported to furnish formation of target vinyl sulfides with high yields (up to 99,%) and excellent Z/E selectivity (>99:1). [source] Spectroelectrochemical and Computational Studies on the Mechanism of Hypoxia Selectivity of Copper RadiopharmaceuticalsCHEMISTRY - A EUROPEAN JOURNAL, Issue 19 2008Jason Abstract Detailed chemical, spectroelectrochemical and computational studies have been used to investigate the mechanism of hypoxia selectivity of a range of copper radiopharmaceuticals. A revised mechanism involving a delicate balance between cellular uptake, intracellular reduction, reoxidation, protonation and ligand dissociation is proposed. This mechanism accounts for observed differences in the reported cellular uptake and washout of related copper bis(thiosemicarbazonato) complexes. Three copper and zinc complexes have been characterised by X-ray crystallography and the redox chemistry of a series of copper complexes has been investigated by using electronic absorption and EPR spectroelectrochemistry. Time-dependent density functional theory (TD-DFT) calculations have also been used to probe the electronic structures of intermediate species and assign the electronic absorption spectra. DFT calculations also show that one-electron oxidation is ligand-based, leading to the formation of cationic triplet species. In the absence of protons, metal-centred one-electron reduction gives the reduced anionic copper(I) species, [CuIATSM],, and for the first time it is shown that molecular oxygen can reoxidise this anion to give the neutral, lipophilic parent complexes, which can wash out of cells. The electrochemistry is pH dependent and in the presence of stronger acids both chemical and electrochemical reduction leads to quantitative and rapid dissociation of copper(I) ions from the mono- or diprotonated complexes, [CuIATSMH] and [CuIATSMH2]+. In addition, a range of protonated intermediate species have been identified at lower acid concentrations. The one-electron reduction potential, rate of reoxidation of the copper(I) anionic species and ease of protonation are dependent on the structure of the ligand, which also governs their observed behaviour in vivo. [source] P NMR studies on the ligand dissociation of trinuclear molybdenum cluster compoundsCHINESE JOURNAL OF CHEMISTRY, Issue 9 2003Zhao-Ji Li Abstract A series of carboxylate-substituted trinuclear molybdenum cluster compounds formulated as Mo3S4(DTP)3(RCO2)(L), where R = H, CH3, C2H5, CH2Cl, CCl3, R1C6H4(R1 is the group on the benzene ring of aromatic carboxylate), L = pyridine, CH3CN, DMF, have been synthesized by the ligand substitution reaction. The dissociation of the loosely-coordinated ligand L from the cluster core was studied by 31P NMR. The dissociation process of L is related to the solvent, temperature, and acidity of carboxylate groups, so as to affect the solution structure and reactive properties of the cluster. The long-distance interaction between ligands RCO2 and L is transported by Mo3S4 core. [source] |