Home About us Contact | |||
Antiviral Drug Development (antiviral + drug_development)
Selected AbstractsViral proteinases: targets of opportunityDRUG DEVELOPMENT RESEARCH, Issue 6 2006Chelsea M. Byrd Abstract During antiviral drug development, any essential stage of the viral life cycle can serve as a potential drug target. Since most viruses encode specific proteases whose cleavage activity is required for viral replication, and whose structure and activity are unique to the virus and not the host cell, these enzymes make excellent targets for drug development. Success using this approach has been demonstrated with the plethora of protease inhibitors approved for use against HIV. This discussion is designed to review the field of antiviral drug development, focusing on the search for protease inhibitors, while highlighting some of the challenges encountered along the way. Protease inhibitor drug discovery efforts highlighting progress made with HIV, HCV, HRV, and vaccinia virus as a model system are included. Drug Dev. Res. 67:501,510, 2006. © 2006 Wiley-Liss, Inc. [source] Good science behind hepatitis C virus antiviral drug development: Necessary but not sufficient,,HEPATOLOGY, Issue 5 2007S. Chris Pappas M.D. No abstract is available for this article. [source] NMR solution structure and backbone dynamics of domain III of the E protein of tick-borne Langat flavivirus suggests a potential site for molecular recognitionPROTEIN SCIENCE, Issue 6 2006Munia Mukherjee Abstract Flaviviruses cause many human diseases, including dengue fever, yellow fever, West Nile viral encephalitis, and hemorrhagic fevers, and are transmitted to their vertebrate hosts by infected mosquitoes and ticks. Domain III of the envelope protein (E-D3) is considered to be the primary viral determinant involved in the virus,host-cell receptor interaction, and thus represents an excellent target for antiviral drug development. Langat (LGT) virus is a naturally attenuated BSL-2 TBE virus and is a model for the pathogenic BSL-3 and BSL-4 viruses in the serogroup. We have determined the solution structure of LGT-E-D3 using heteronuclear NMR spectroscopy. The backbone dynamics of LGT-E-D3 have been investigated using 15N relaxation measurements. A detailed analysis of the solution structure and dynamics of LGT-E-D3 suggests potential residues that could form a surface for molecular recognition, and thereby represent a target site for antiviral therapeutics design. [source] Virion half-life in chronic hepatitis B infection is strongly correlated with levels of viremia,HEPATOLOGY, Issue 4 2008Maura Dandri Analysis of hepatitis B virus (HBV) kinetics with mathematical models may disclose new aspects of HBV infection and host response mechanisms. To determine the kinetics of virion decay from the blood of patients in different phases of chronic infection, we applied mathematical modeling to real-time polymerase chain reaction assays, which enable quantification of viremia and intrahepatic HBV productivity by measuring both copy number and activity of covalently closed circular DNA (relaxed circular DNA/covalently closed circular DNA) in the liver of 80 untreated chronically active HBV carriers (38 hepatitis B e antigen [HBeAg]-positive and 42 HBeAg-negative individuals). We found that the half-life of circulating virions is very fast (median 46 and 2.5 minutes in HBeAg-positive and HBeAg-negative individuals, respectively) and strongly related to viremia, with clearance rates significantly accelerating as viral loads decrease. To investigate whether immune components can influence the kinetics of virion decay, we analyzed viral dynamics in immunodeficient urokinase-type plasminogen activator chimera mice. Virion half-life in mice (range, 44 minutes to >4 hours) was comparable to estimates determined in high viremic carriers, implying that clearance rates in these patients are mostly determined by common nonspecific mechanisms. Notably, the lack of correlation between virion half-life and viremia in mice indicated that immune components significantly accelerate virion clearance rates in individuals with low titers. Conclusion: Our analyses suggest that both host defense mechanisms and levels of circulating virions affect the kinetics of HBV decay assessed in the serum of chronic carriers. Identification of the factors affecting clearance rates will be important for future antiviral drug developments and it may give insights into the mechanisms involved in clearance of other chronic infections, such as human immunodeficiency virus and hepatitis C virus. (HEPATOLOGY 2008.) [source] |