Antipredator Behaviour (antipredator + behaviour)

Distribution by Scientific Domains


Selected Abstracts


Sex-Specific Aggression and Antipredator Behaviour in Young Brown Trout

ETHOLOGY, Issue 7 2001
Jörgen I. Johnsson
Sex differences in adult behaviour are often interpreted as consequences of sexual selection and/or different reproductive roles in males and females. Sex-specific juvenile behaviour, however, has received less attention. Adult brown trout males are more aggressive than females during spawning and juvenile aggression may be genetically correlated with adult aggression in fish. We therefore tested the prediction that immature brown trout males are more aggressive and bolder than immature females. Because previous work has suggested that precocious maturation increases dominance in salmonids, we included precocious males in the study to test the prediction that early sexual maturation increase male aggression and boldness. Aggression and dominance relations were estimated in dyadic contests, whereas boldness was measured as a response to simulated predation risk using a model heron. Independent of maturity state, males initiated more than twice as many agonistic interactions as females in intersexual contests. However, males were not significantly more likely to win these contests than females. The response to a first predator attack did not differ between sex categories, but males reacted less to a second predator attack than females. Sexual maturity did not affect the antipredator response in males. Since there is no evidence from field studies that stream-living immature male and female salmonids differ in growth rate, it appears unlikely that the sex differences demonstrated are behavioural consequences of sex-specific investment in growth. It seems more likely that sex-specific behaviour arises as a correlated response to sexually selected gene actions promoting differential behaviour in adult males and females during reproduction. Alternatively, sex differences may develop gradually during juvenile life, because a gradual developmental program should be less costly than a sudden behavioural change at the onset of sexual maturity. [source]


Species-specific responses of planktivorous fish to the introduction of a new piscivore: implications for prey fitness

FRESHWATER BIOLOGY, Issue 9 2007
FRANZ HÖLKER
Summary 1. Antipredator behaviour by the facultative planktivorous fish species roach (Rutilus rutilus), perch (Perca fluviatilis) and rudd (Scardinius erythrophthalmus) was studied in a multi-year whole-lake experiment to evaluate species-specific behavioural and numerical responses to the stocking of pikeperch (Sander lucioperca), a predator with different foraging behaviour than the resident predators large perch (P. fluviatilis) and pike (Esox lucius). 2. Behavioural responses to pikeperch varied greatly during the night, ranging from reduced activity (roach and small perch) and a shift in habitat (roach), to no change in the habitat use and activity of rudd. The differing responses of the different planktivorous prey species highlight the potential variation in behavioural response to predation risk from species of similar vulnerability. 3. These differences had profound effects on fitness; the density of species that exhibited an antipredator response declined only slightly (roach) or even increased (small perch), whereas the density of the species that did not exhibit an antipredator response (rudd) decreased dramatically (by more than 80%). 4. The maladaptive behaviour of rudd can be explained by a ,behavioural syndrome', i.e. the interdependence of behaviours expressed in different contexts (feeding activity, antipredator) across different situations (different densities of predators). 5. Our study extends previous studies, that have typically been limited to more controlled situations, by illustrating the variability in intensity of phenotypic responses to predators, and the consequences for population density, in a large whole-lake setting. [source]


The effects of kin and familiarity on interactions between fish

FISH AND FISHERIES, Issue 4 2003
Ashley J W Ward
Abstract Fish have been shown to discriminate between individuals on very general bases such as species, body length and colour. More recently, evidence has been accumulating from a number of species that relatedness and familiarity may be extremely important in mediating a range of interactions between individual fish. Studies have shown that fish are able to recognize kin and/or familiars, and that this ability potentially conveys significant benefits, including increased inclusive fitness, reduced inbreeding costs, reduced competition and enhanced antipredator behaviour. Here, we review the literature and consider future directions and applications for this research. [source]


Body size, locomotor speed and antipredator behaviour in a tropical snake (Tropidonophis mairii, Colubridae): the influence of incubation environments and genetic factors

FUNCTIONAL ECOLOGY, Issue 5 2001
J. K. Webb
Summary 1,The physical conditions experienced by reptile embryos inside natural nests can influence the size, shape and behaviour of the resultant hatchlings. Although most reptiles are tropical, the effects of incubation temperatures on offspring phenotypes have received little attention in tropical species. 2,The consequences of differences in thermal variance during incubation on offspring were studied in a tropical natricine snake (the Keelback Tropidonophismairii), which lays eggs in soil cracks of varying depths. Some 253 eggs from 19 clutches were incubated under two thermal regimes with identical mean temperatures (25·6 °C), but temperatures in the ,variable' treatment fluctuated more (21·8,29·6 °C) than those in the ,constant' temperature treatment (25·2,26·5 °C). These thermal regimes were similar to those of shallow (20 cm deep) and deep (40 cm deep) soil cracks, respectively, and represent thermal conditions inside natural nests and potential nest sites. 3,Incubation temperatures affected body size, shape and antipredator behaviour of hatchling snakes. Snakes from constant temperature incubation were longer and thinner than snakes from high variance incubation. Clutch effects influenced all offspring traits, with significant interactions between clutch of origin and incubation treatment for body size, but not swimming speed or behaviour. 4,There was a significant interaction between incubation treatment and offspring sex on neonate swimming speed. Incubation under cycling thermal regimes significantly increased swimming speeds of females, but had little effect on males. Such sex differences in phenotypic responses of hatchling snakes support a major assumption of the Charnov,Bull hypothesis for the evolution of temperature-dependent sex determination. [source]


Scared fish get lazy, and lazy fish get fat

JOURNAL OF ANIMAL ECOLOGY, Issue 4 2009
Frank Johansson
Summary 1Many biological textbooks present predator-induced morphological changes in prey species as an example of an adaptive response, because the morphological change is associated with lower predation risk. Here we show that the adaptive morphological response observed in many systems may actually be an indirect effect of decreased activity , which reduces the predation risk , rather than a direct adaptive response. 2One of the classical examples comes from crucian carp, where the presence of pike leads to a deeper body. We manipulated pike cues (presence and absence) and water current (standing and running water) and found that both standing water and pike cues similarly and independently induced a deeper body. 3Since the presence of pike cues as well as standing water might be associated with low swimming activity, we suggest that the presence of pike causes a reduction in activity (antipredator behaviour). Reduced activity subsequently induces a deeper body, possibly because the energy saved is allocated to a higher growth rate. 4Our result suggests that even if morphological change is adaptive, it might be induced indirectly via activity. This important conceptual difference may be similar in many other systems. [source]


Moving to suburbia: ontogenetic and evolutionary consequences of life on predator-free islands

JOURNAL OF BIOGEOGRAPHY, Issue 5-6 2002
Daniel T. Blumstein
Aim Many species find themselves isolated from the predators with which they evolved. This situation commonly occurs with island biota, and is similar to moving from the dangerous inner-city to the suburbs. Economic thinking tells us that we should expect costly antipredator behaviour to be lost if it is no longer beneficial. The loss of antipredator behaviour has important consequences for those seeking to translocate or reintroduce individuals from predator-free islands back to the predator-rich mainland, but we have neither a detailed understanding of the mechanisms of loss nor information on the time course of relaxed selection. Some antipredator behaviours are experience-dependent: experience with predators is required for their proper performance. In these cases, antipredator behaviour is lost after only a single generation of isolation, but it should be able to be regained following exposure to predators. Other behaviours may be more `hard-wired'. The evolutionary loss of antipredator behaviour may occur over as few as several generations, but behaviours may also persist for many thousands of years of predator-free living. Location Australia and New Zealand. Methods I discuss the results of a series of studies designed to document the mechanisms and time course of relaxed selection for antipredator behaviour in macropodid marsupials. Controlled studies of visual, acoustic and olfactory predator recognition, as well as field studies of antipredator vigilance focused on several species of kangaroos and wallabies. Results Visual predator recognition may be retained following 9500 years of relaxed selection, but olfactory and acoustic predator recognition may have to be learned. Insular populations allow humans to approach closer before fleeing than mainland animals. Insular species may retain `group size effects' , the ability to seek safety in numbers , when they are exposed to any predators. Main conclusions I suggest that the presence of any predators may be an important factor in maintaining functional antipredator behaviour. Managers should pay particular attention as to the source and evolutionary history of their population when planning translocations or reintroductions. [source]


Predator-inspection behaviour in female three-spined sticklebacks Gasterosteus aculeatus is associated with status of gravidity

JOURNAL OF FISH BIOLOGY, Issue 8 2009
J. G. Frommen
Differences in predator-inspection behaviour between gravid and non-gravid female as well as between male and female three-spined sticklebacks Gasterosteus aculeatus were investigated. Gravid females confronted with a live rainbow trout Oncorhynchus mykiss showed bolder inspection behaviour than non-gravid ones. The behaviour of gravid females was comparable with that of males, maybe because both face a high risk of predation. The results indicate that antipredator behaviour in female G. aculeatus is not fixed but adjusted to their reproductive state. [source]


Habitat-choice interactions between pike predators and perch prey depend on water transparency

JOURNAL OF FISH BIOLOGY, Issue 1 2007
C. Skov
A mesocosm experiment indicated that water transparency influenced antipredator behaviour in young-of-the-year perch Perca fluviatilis, which partly contradicts another study by showing that high transparency decreases rather than increases perch antipredatory use of vegetated habitats when predators are also free to choose habitat. The present study emphasizes the importance of simultaneously considering both prey and predator habitat-choice behaviours when evaluating predator,prey interactions in relation to water visibility [source]


Moving to suburbia: ontogenetic and evolutionary consequences of life on predator-free islands

JOURNAL OF BIOGEOGRAPHY, Issue 5-6 2002
Daniel T. Blumstein
Aim Many species find themselves isolated from the predators with which they evolved. This situation commonly occurs with island biota, and is similar to moving from the dangerous inner-city to the suburbs. Economic thinking tells us that we should expect costly antipredator behaviour to be lost if it is no longer beneficial. The loss of antipredator behaviour has important consequences for those seeking to translocate or reintroduce individuals from predator-free islands back to the predator-rich mainland, but we have neither a detailed understanding of the mechanisms of loss nor information on the time course of relaxed selection. Some antipredator behaviours are experience-dependent: experience with predators is required for their proper performance. In these cases, antipredator behaviour is lost after only a single generation of isolation, but it should be able to be regained following exposure to predators. Other behaviours may be more `hard-wired'. The evolutionary loss of antipredator behaviour may occur over as few as several generations, but behaviours may also persist for many thousands of years of predator-free living. Location Australia and New Zealand. Methods I discuss the results of a series of studies designed to document the mechanisms and time course of relaxed selection for antipredator behaviour in macropodid marsupials. Controlled studies of visual, acoustic and olfactory predator recognition, as well as field studies of antipredator vigilance focused on several species of kangaroos and wallabies. Results Visual predator recognition may be retained following 9500 years of relaxed selection, but olfactory and acoustic predator recognition may have to be learned. Insular populations allow humans to approach closer before fleeing than mainland animals. Insular species may retain `group size effects' , the ability to seek safety in numbers , when they are exposed to any predators. Main conclusions I suggest that the presence of any predators may be an important factor in maintaining functional antipredator behaviour. Managers should pay particular attention as to the source and evolutionary history of their population when planning translocations or reintroductions. [source]


Geographic variation in sperm traits reflects predation risk and natural rates of multiple paternity in the guppy

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2010
K. E. ELGEE
Abstract Guppies (Poecilia reticulata) are models for understanding the interplay between natural and sexual selection. In particular, predation has been implicated as a major force affecting female sexual preferences, male mating tactics and the level of sperm competition. When predation is high, females typically reduce their preferences for showy males and engage more in antipredator behaviours, whereas males exploit these changes by switching from sexual displays to forced matings. These patterns are thought to account for the relatively high levels of multiple paternity in high-predation populations compared to low-predation populations. Here, we assess the possible evolutionary consequences of these patterns by asking whether variation in sperm traits reflect differences in predation intensity among four pairs of Trinidadian populations: four that experience relatively low levels of predation from a gape-limited predator and four that experience relatively high levels of predation from a variety of piscivores. We found that males in high-predation populations had faster swimming sperm with longer midpieces compared to males in low-predation populations. However, we found no differences among males in high- and low-predation populations with respect to sperm number, sperm head length, flagellum length and total sperm length. [source]