Antiparasitic Drug (antiparasitic + drug)

Distribution by Scientific Domains


Selected Abstracts


Simultaneous determination of metronidazole and spiramycin in bulk powder and in tablets using different spectrophotometric techniques

DRUG TESTING AND ANALYSIS, Issue 1 2010
Fatma I. Khattab
Abstract Metronidazole (MZ) is an anti-infective drug used in the treatment of anaerobic bacterial and protozoa infections in humans. It is also used as a vetinary antiparasitic drug. Spiramycin (SP) is a medium-spectrum antibiotic with high effectiveness against Gram-positive bacteria. Three simple, sensitive, selective and precise spectrophotometric methods were developed and validated for the simultaneous determination of MZ and SP in their pure form and in pharmaceutical formulations. In methods A and B, MZ was determined by the application of direct spectrophotometry and by measuring its zero-order (D0) absorption spectra at its ,max = 311 nm. In method A, SP was determined by the application of first derivative spectrophotometry (D1) and by measuring the amplitude at 218.3 nm. In method B, the first derivative of the ratio spectra (DD1) was applied, and SP was determined by measuring the peak amplitude at 245.6 nm. Method C entailed mean centring of the ratio spectra (MCR), which allows the determination of both MZ and SP. The methods developed were used for the determination of MZ and SP over a concentration range of 5,25 µg ml,1. The proposed methods were used to determine both drugs in their pure, powdered forms with mean percentage recoveries of 100.16 ± 0.73 for MZ in methods A and B, 101.10 ± 0.90 in method C, 100.09 ± 0.70, 100.02 ± 0.88 and 100.49 ± 1.26 for SP in methods A, B and C, respectively. The proposed methods were proved using laboratory-prepared mixtures of the two drugs and were successfully applied to the analysis of MZ and SP in tablet formulation without any interference from each other or from the excipients. The results obtained by applying the proposed methods were compared statistically with a reported HPLC method and no significant difference was observed between these methods regarding both accuracy and precision. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Behavioral effects of ivermectin in a freshwater oligochaete, Lumbriculus variegatus

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2001
Jing Ding
Abstract Ivermectin is a potent antiparasitic drug against nematode and arthropod parasites. In this study, we examined the lethal and sublethal effects of ivermectin in a freshwater oligochaete, Lumbriculus variegatus. The median lethal concentration (LC50) at 72 h after ivermectin exposure was 560 nM. Sublethal endpoints focused on several stimulus-evoked locomotor behaviors: escape reflexes controlled by giant interneuron pathways, swimming and reversal, and crawling. Swimming, reversal, and crawling are controlled by nongiant interneuron pathways. Ivermectin inhibited swimming, reversal, crawling frequency, and crawling speed in a time- and concentration-dependent manner with a mean inhibitory concentration (IC50) at 3 h of 1.1, 16, 91, and 51nM, respectively. Ivermectin at 0.3 nM also significantly decreased the frequency of helical swimming waves. Picrotoxin, a Cl, channel blocker, antagonized the ivermectin-induced decrease in swimming frequency, crawling frequency, and crawling speed. There were no adverse effects on escape reflex 3 h after exposure to 300 nM ivermectin. Electrophysiological recordings showed that ivermectin had no effects on the conduction velocity of giant fiber systems. The results indicated that locomotor behaviors controlled by nongiant locomotor pathways were more sensitive to ivermectin than pathways controlled by giant interneurons and that Cl, channels may be involved in mediating ivermectin's inhibitory effects. [source]


Influence of verapamil on the efflux and metabolism of 14C moxidectin in cultured rat hepatocytes

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 3 2001
J. Dupuy
Moxidectin (MOX) is an antiparasitic drug widely used in cattle, sheep and companion animals. As a result of the implication of cytochrome P450 3 A in the metabolism of MOX and the role of competitor substrates of P-glycoprotein (Pgp) in modification of the bioavailability of endectocides, we studied the influence of verapamil (a multidrug-resistance reversing agent) on the metabolism of 14C moxidectin in cultured rat hepatocytes over 72 h. The metabolism of MOX remained low: 10.79 ± 1.99% of the total 14C moxidectin for the main detected metabolite in verapamil-treated cells and 7.17 ± 0.74% for the control cells after 24 h. The main detected metabolite in rat hepatocytes was the same as that detected in rat hepatic microsomes (the C29 monohydroxymethyl metabolite). Verapamil increased the quantity of MOX in the cells after 24, 48 and 72 h. Examination of the Area Under the concentration time Curve (AUC) of the main detected metabolite revealed a significant increase in the exposure of cells to MOX after verapamil treatment throughout the experiment. It is hypothesized that verapamil interfered with MOX as a substrate for Pgp during the initial incubation period. After this initial interaction, verapamil metabolites were able to interfere with Pgp. This experiment demonstrated the implication of Pgp in the transport of MOX and allowed prediction of the drug,drug interactions which might modify the bioavailability of endectocides. [source]


Unified QSAR & network-based computational chemistry approach to antimicrobials.

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 1 2010

Abstract In the previous work, we reported a multitarget Quantitative Structure-Activity Relationship (mt-QSAR) model to predict drug activity against different fungal species. This mt-QSAR allowed us to construct a drug,drug multispecies Complex Network (msCN) to investigate drug,drug similarity (González-Díaz and Prado-Prado, J Comput Chem 2008, 29, 656). However, important methodological points remained unclear, such as follows: (1) the accuracy of the methods when applied to other problems; (2) the effect of the distance type used to construct the msCN; (3) how to perform the inverse procedure to study species,species similarity with multidrug resistance CNs (mdrCN); and (4) the implications and necessary steps to perform a substructural Triadic Census Analysis (TCA) of the msCN. To continue the present series with other important problem, we developed here a mt-QSAR model for more than 700 drugs tested in the literature against different parasites (predicting antiparasitic drugs). The data were processed by Linear Discriminate Analysis (LDA) and the model classifies correctly 93.62% (1160 out of 1239 cases) in training. The model validation was carried out by means of external predicting series; the model classified 573 out of 607, that is, 94.4% of cases. Next, we carried out the first comparative study of the topology of six different drug,drug msCNs based on six different distances such as Euclidean, Chebychev, Manhattan, etc. Furthermore, we compared the selected drug,drug msCN and species,species mdsCN with random networks. We also introduced here the inverse methodology to construct species,species msCN based on a mt-QSAR model. Last, we reported the first substructural analysis of drug,drug msCN using Triadic Census Analysis (TCA) algorithm. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010 [source]


Pharmacological approaches towards rationalizing the use of endoparasitic drugs in small animals

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 6 2006
S. F. SANCHEZ BRUNI
Parasitic diseases are an important health concern to small animal veterinarians worldwide, and their zoonotic potential is also of relevance to human medicine. The treatment and control of such conditions relies heavily on pharmaceutical intervention using a range of antiparasitic drugs and/or their biologically active metabolites. Broad spectrum agents have been produced, although narrow and even monospecific drugs are used in some situations. Their efficacy may depend on dosage, the target pathogen(s), the host species and/or the site of infection. Optimal use of antiparasitics requires a detailed consideration of the pharmacokinetic and pharmacodynamic properties of the drugs in specific clinical contexts. This review summarizes the present status of knowledge on the metabolism, and physicochemical and pharmacological properties of the major antiparasitic drugs currently used in small animal veterinary practice. In addition, data relevant to therapeutic dosage, efficacy and clinical indication/contraindication, particularly in relation to combination drug therapy, are included. [source]


Genome Sequencing and Comparative Genomics of Tropical Disease Pathogens

CELLULAR MICROBIOLOGY, Issue 12 2003
Jane M. Carlton
Summary The sequencing of eukaryotic genomes has lagged behind sequencing of organisms in the other domains of life, archae and bacteria, primarily due to their greater size and complexity. With recent advances in ,high-throughput ,technologies ,such ,as ,robotics and improved computational resources, the number of eukaryotic genome sequencing projects has in-creased significantly. Among these are a number of sequencing projects of tropical pathogens of medical and veterinary importance, many of which are responsible for causing widespread morbidity and mortality in peoples of developing countries. Uncovering the complete gene complement of these organisms is proving to be of immense value in the develop-ment of novel methods of parasite control, such as antiparasitic drugs and vaccines, as well as the development of new diagnostic tools. Combining pathogen genome sequences with the host and vector genome sequences is promising to be a robust method for the identification of host,pathogen interactions. Finally, comparative sequencing of related species, especially of organisms used as model systems in the study of the disease, is beginning to realize its potential in the identification of genes, and the evolutionary forces that shape the genes, that are involved in evasion of the host immune response. [source]