Antioxidant Response Element (antioxidant + response_element)

Distribution by Scientific Domains


Selected Abstracts


Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia

JOURNAL OF NEUROCHEMISTRY, Issue 5 2010
Tae Gen Son
J. Neurochem. (2010) 112, 1316,1326. Abstract Many phytochemicals function as noxious agents that protect plants against insects and other damaging organisms. However, at subtoxic doses, the same phytochemicals may activate adaptive cellular stress response pathways that can protect cells against a variety of adverse conditions. We screened a panel of botanical pesticides using cultured human and rodent neuronal cell models, and identified plumbagin as a novel potent activator of the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. In vitro, plumbagin increases nuclear localization and transcriptional activity of Nrf2, and induces the expression of the Nrf2/ARE-dependent genes, such as heme oxygenase 1 in human neuroblastoma cells. Plumbagin specifically activates the Nrf2/ARE pathway in primary mixed cultures from ARE-human placental alkaline phosphatase reporter mice. Exposure of neuroblastoma cells and primary cortical neurons to plumbagin provides protection against subsequent oxidative and metabolic insults. The neuroprotective effects of plumbagin are abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo, administration of plumbagin significantly reduces the amount of brain damage and ameliorates-associated neurological deficits in a mouse model of focal ischemic stroke. Our findings establish precedence for the identification and characterization of neuroprotective phytochemicals based upon their ability to activate adaptive cellular stress response pathways. [source]


The effect of NQO1 polymorphism on the inflammatory response in cardiopulmonary bypass

CELL BIOCHEMISTRY AND FUNCTION, Issue 4 2008
C. Selim Isbir
Abstract Cardiopulmonary bypass (CPB) has been associated with systemic inflammatory response syndrome (SIRS). Endothelial dysfunction related to non-laminar flow during CPB is known to play a key role in this complex pathology. Antioxidant response element (ARE) dependent NAD(P)H:quinone oxidoreductase 1 (NQO1) promoter is a regulatory element involved in the anti-inflammatory mechanism in vasculature exposed to non-laminar flow. Mutation of the NQO1 could represent a novel anti-inflammatory effect in CPB. The goal of this study was to demonstrate whether genetic variants of NQO1 affect cytokine release after CPB. Eighteen patients who underwent standard coronary artery bypass grafting (CABG) operation were included in the study. Genotyping for NQO1 was performed. Serum Interleukin-6 (IL-6) levels were measured before induction, during CPB after declamping the aorta, and 24,h after operation. Clinical data were collected respectively. Seven patients were NQO1 T carriers and 11 patients were NQO1 T non-carriers. During CPB, IL-6 concentrations were increased in NQO1 T carriers compared to T non-carriers (p,=,0.038). Although ventilation times and blood loss were higher in T carriers these were not statistically significant. Patients with NQO1 T carriers showed significantly higher IL-6 levels during CPB. Non-laminar flow during CPB may diminish the transcriptional activation of the NQO1 in T carriers. Preoperative determination of this novel anti-inflammatory mechanism could be useful to improve operative outcome in CPB. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Nrf2-mediated induction of detoxifying enzymes by alantolactone present in Inula helenium

PHYTOTHERAPY RESEARCH, Issue 11 2008
Ji Yeon Seo
Abstract Our previous study showed that a methanol extract of Inula helenium had the potential to induce detoxifying enzymes such as quinone reductase (QR) and glutathione S -transferase (GST) activity. In this study the methanol extract was further fractionated using silica gel chromatography and vacuum liquid chromatography, to yield pure compounds alantolactone and isoalantolactone as QR inducers. Alantolactone caused a dose-dependent induction of antioxidant enzymes including QR, GST, , -glutamylcysteine synthase, glutathione reductase, and heme oxygenase 1 in hepa1c1c7 mouse hepatoma cells. The compound increased the luciferase activity of HepG2-C8 cells, transfectants carrying antioxidant response element (ARE)-luciferase gene, in a dose-dependent manner, suggesting ARE-mediated transcriptional activation of antioxidant enzymes. Alantolactone also stimulated the nuclear accumulation of Nrf2 that was inhibited by phosphatidylinositol 3-kinase (PI3K) inhibitors. In conclusion, alantolactone appears to induce detoxifying enzymes via activation of PI3K and JNK signaling pathways, leading to translocation of Nrf2, and subsequent interaction between Nrf2 and ARE in the encoding genes. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Brazilin and the extract from Caesalpinia sappan L. protect oxidative injury through the expression of heme oxygenase-1

BIOFACTORS, Issue 3 2007
Byung-Min Choi
Abstract In this study, we examined the protective effects of Caesalpinia sappan L. and its major component, brazilin, against tert-butylhydroperoxide (t-BHP)-induced cell death in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. We found that the extract of C. sappan L. and brazilin induced antioxidant response element (ARE)-luciferase activity and heme oxygenase-1 (HO-1) expression in a concentration-dependent manner. The inductive effect of brazilin was more potent than the extract of C. sappan L. and the expression of HO-1 reached a peak at 12 h after brazilin treatment. The extract and brazilin protected the cells against t-BHP-induced cell death. Their protective effects were abrogated by zinc protoporphyrin IX (ZnPP IX), a HO inhibitor. These results demonstrate that the extract of C. sappan L. and brazilin induce the expression of HO-1 and the enzyme diminishes t-BHP-induced cell death in HEI-OC1 cells. [source]


Chromium (VI) inhibits heme oxygenase-1 expression in vivo and in arsenic-exposed human airway epithelial cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2006
Kimberley A. O'Hara
Inhaled hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms. One hypothesis for this lung pathogenesis is that Cr(VI) silences induction of cytoprotective genes, such as heme oxygenase-1 (HO-1), whose total lung mRNA levels were reduced 21 days after nasal instillation of potassium dichromate in C57BL/6 mice. To investigate the mechanisms for this inhibition, Cr(VI) effects on basal and arsenic (As(III))-induced HO-1 expression were examined in cultured human bronchial epithelial (BEAS-2B) cells. An effect of Cr(VI) on the low basal HO-1 mRNA and protein levels in BEAS-2B cells was not detectible. In contrast, Cr(VI) added to the cells before As(III), but not simultaneously with As(III), attenuated As(III)-induced HO-1 expression. Transient transfection with luciferase reporter gene constructs controlled by the full length ho-1 promoter or deletion mutants demonstrated that this inhibition occurred in the E1 enhancer region containing critical antioxidant response elements (ARE). Cr(VI) pretreatment inhibited As(III)-induced activity of a transiently expressed reporter construct regulated by three ARE tandem repeats. The mechanism for this Cr(VI)-attenuated transactivation appeared to be Cr(VI) reduction of the nuclear levels of the transcription factor Nrf2 and As(III)-stimulated Nrf2 transcriptional complex binding to the ARE cis element. Finally, exposing cells to Cr(VI) prior to co-exposure with As(III) synergized for apoptosis and loss of membrane integrity. These data suggest that Cr(VI) silences induction of ARE-driven genes required for protection from secondary insults. The data also have important implications for understanding the toxic mechanisms of low level, mixed metal exposures in the lung. J. Cell. Physiol. 209: 113,121, 2006. © 2006 Wiley-Liss, Inc. [source]