Home About us Contact | |||
Antiinflammatory Cytokines (antiinflammatory + cytokine)
Selected AbstractsPolymorphisms in PTGS1, PTGS2 and IL-10 do not influence colorectal adenoma recurrence in the context of a randomized aspirin intervention trialINTERNATIONAL JOURNAL OF CANCER, Issue 9 2007Richard A. Hubner Abstract Regular use of aspirin and other nonsteroidal antiinflammatory drugs reduces both the development of colorectal neoplasia and recurrence of colorectal adenoma (CRA). Modulation of the effects of aspirin by genetic factors has been reported, potentially allowing targeting of treatment to individuals most likely to gain benefit. Prostaglandin H synthase 1 (PTGS1) and PTGS2 are key enzymes in prostaglandin synthesis and are inhibited by aspirin, whilst interleukin-10 (IL-10) is an important antiinflammatory cytokine. We investigated whether functional genetic polymorphisms in the PTGS1, PTGS2 and IL-10 genes influence CRA recurrence in individuals participating in a randomized aspirin intervention trial. DNA was available for genotyping from 546 patients who received aspirin (300 mg daily) or placebo for a mean 41-months' duration. Homozygote carriers of variant alleles for the PTGS1 50C>T, PTGS2 ,765G>C and IL-10 ,592C>A polymorphisms did not have a significantly altered risk of CRA recurrence (relative risk [RR] = 0.91; 95% confidence interval [CI]: 0.14,6.07, RR = 1.32; 95%CI: 0.66,2.62 and RR = 1.24; 95% CI: 0.74,2.07, respectively). There were also no significant interactions between aspirin intervention and genotype in determining recurrence risk. These data indicate that these polymorphisms are unlikely to influence CRA recurrence and cannot be used to identify individuals who derive benefit from aspirin intervention. © 2007 Wiley-Liss, Inc. [source] Interleukin-4 antagonizes oncostatin M and transforming growth factor beta-induced responses in articular chondrocytesJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Mohammed El Mabrouk Abstract Oncostatin M (OSM) stimulates cartilage degradation in rheumatoid arthritis (RA) by inducing matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS; a disintegrin and metalloproteinase with thrombospondin motif). Transforming growth factor beta (TGF-,1) induces cartilage repair in joints but in excessive amounts, promotes inflammation. OSM and TGF-,1 also induce tissue inhibitor of metalloproteinase-3 (TIMP-3), an important natural inhibitor of MMPs, aggrecanases, and tumor necrosis factor alpha converting enzyme (TACE), the principal proteases involved in arthritic inflammation and cartilage degradation. We studied cartilage protective mechanisms of the antiinflammatory cytokine, interleukin-4 (IL-4). IL-4 strongly (MMP-13 and TIMP-3) or minimally (ADAMTS-4) suppressed OSM-induced gene expression in chondrocytes. IL-4 did not affect OSM-stimulated phosphorylation of extracellular signal-regulated kinases (ERKs), protein 38 (p38), c-Jun N-terminal kinase (JNK) and Stat1. Lack of additional suppression with their inhibitors suggested that MMP-13, ADAMTS-4, and TIMP-3 inhibition was independent of these mediators. IL-4 also downregulated TGF-,1-induced TIMP-3 gene expression, Smad2, and JNK phosphorylation. Additional suppression of TIMP-3 RNA by JNK inhibitor suggests JNK implication. The cartilage protective effects of IL-4 in animal models of arthritis may be due to its inhibition of MMPs and ADAMTS-4 expression. However, suppression of TIMP-3 suggests caution for using IL-4 as a cartilage protective therapy. J. Cell. Biochem. 103: 588,597, 2008. © 2007 Wiley-Liss, Inc. [source] Interleukin-10 is associated with resistance to febrile seizures: Genetic association and experimental animal studiesEPILEPSIA, Issue 4 2009Yoshito Ishizaki Summary Purpose:, Febrile seizures (FS) are the most common form of childhood convulsions. Many reports have shown that a proinflammatory cytokine, interleukin-1 (IL-1) ,, may have a facilitatory effect on the development of FS. We have previously shown that the IL1B -511C/T single nucleotide polymorphism (SNP) is associated with simple FS of sporadic occurrence. The balance between pro- and antiinflammatory cytokines influences the regulation of infections and could, therefore, play a role in the pathogenesis of FS. Here, to determine whether pro- and antiinflammatory cytokine genes are responsible for the susceptibility to FS, we have performed an association study on functional SNPs of cytokine genes in FS patients and controls. Methods:, The promoter SNPs of four inflammatory cytokine genes (IL6 -572C/G, IL8 -251A/T, IL10 -592A/C and TNFA -1037C/T) were examined in 249 patients with FS (186 simple and 63 complex FS) and 225 controls. Because the IL10 -592 SNP showed a positive association with FS, two additional SNPs (IL10 -1082A/G and -819T/C) were subjected to haplotype analysis. Furthermore, we examined the in vivo role of IL-10 in hyperthermia-induced seizures using immature animal models. Results:, The frequencies of the IL10 -592C allele and -1082A/-819C/-592C haplotype were significantly decreased in FS as compared with in controls (p = 0.014 and 0.013, respectively). The seizure threshold temperature in the IL-10,administered rats was significantly higher than that in the saline-treated control ones (p = 0.027). Conclusions:, The present study suggests that IL-10 is genetically associated with FS and, contrary to IL-1,, confers resistance to FS. [source] Increased Plasma Levels of Pro- and Anti-inflammatory Cytokines in Patients with Febrile SeizuresEPILEPSIA, Issue 8 2002Miia Virta Summary: ,Purpose: Pro- and antiinflammatory cytokines regulate the febrile response during infection. Febrile seizures (FSs) conversely are associated with rapid onset of high fever. Activation of the cytokine network has been shown in previous studies of FSs and cytokines. In this study, the association between cytokines and FSs was further investigated. Methods: Interleukin-1, (IL-1,), interleukin-1 receptor antagonist (IL-1RA), interleukin-6 (IL-6), interleukin-10, and tumor necrosis factor-, plasma levels were measured with enzyme-linked immunosorbent assay in 55 children with FSs and in 20 age-matched febrile controls immediately on arrival at the hospital. Cerebrospinal fluid cytokine levels also were measured in 16 FS children. Results: The plasma IL-1RA/IL-1, ratio (mean, 2,133 vs. 119; median, 790 vs. 105; p < 0.0001) and plasma IL-6 (mean, 41.7 pg/ml vs. 16.1 pg/ml; median, 19.6 pg/ml vs. 10.5 pg/ml; p = 0.005) were significantly higher in FS patients compared with control children. Logistic regression analysis was used to find the most significant predisposing factors for FSs. In this analysis, the high plasma IL-1RA/IL-1, ratio was the most significant factor connected to FSs (OR, 41.5; 95% CI, 4.9,352.8), but high plasma IL-6 also was significantly associated with FSs (OR, 5.3; 95% CI, 1.4,20.3). Conclusions: Present results support the hypothesis that the cytokine network is activated and could have a role in the pathogenesis of FS. [source] Role of NK1.1+ and AsGm-1+ cells in oral immunoregulation of experimental colitisINFLAMMATORY BOWEL DISEASES, Issue 2 2003Shivti Trop Abstract NK1.1 and AsGm-1 expressing cells play a role in immunomodulation. Our purpose was to determine the role of NK1.1+ and AsGm-1+ expressing cells in the inflammatory/tolerance paradigm in experimental colitis. Oral tolerance towards colitis-extracted proteins had previously been shown to alleviate experimental colitis. Colitis was induced in C57/B6 mice by intracolonic instillation of trinitrobenzenesulfonic acid (TNBS). Oral tolerance was induced via five oral doses of proteins extracted from TNBS-colitis colonic wall. Clinical, macroscopic, and microscopic scores were used for colitis assessment. To evaluate the putative role of AsGm-1 in tolerance induction, depletion of AsGm-1 expressing cells was performed. To evaluate the mechanism of tolerance induction, liver-associated NKT lymphocytes were harvested 14 days following tolerance induction, and cultured with concanavalin A (con A) and colitis-extracted proteins. T cell subsets were measured by flow cytometry. Cytokine expression was measured by intracellular staining and enzyme-linked immunosorbent assay (ELISA). Orally tolerized mice exhibited significant alleviation of the clinical, macroscopic, and microscopic parameters of colitis, with increased CD4+IL4+/CD4+IFN,+ lymphocyte ratio, increased IL-4, and decreased IFN, and IL-12 serum levels. In contrast, orally fed mice that were AsGm-1 depleted showed evidence of severe colitis. These mice exhibited significant decreased CD4+IL4+/CD4+IFN,+ ratios, and an increase in IFN, and IL-12, with decreased IL-4 levels. NKT cells harvested from tolerized mice secreted high levels of antiinflammatory cytokines. In contrast, in nontolerized mice, NKT cells mainly secreted proinflammatory cytokines. In a tolerized environment, both NK1.1 and AsGm-1 expressing cells are essential for disease alleviation. In contrast, in a nontolerized environment, AsGm-1 expressing cells support an antiinflammatory immune paradigm, while NKT lymphocytes support a proinflammatory shift. [source] Multiple mechanisms that prevent excessive brain inflammationJOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2007Myung-Soon Yang Abstract Inflammation of the injured brain has a double-edged effect. Inflammation protects the brain from infection, but it aggravates injury. Furthermore, brain inflammation is considered a risk factor for neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Emerging evidence supports the activation of negative regulatory mechanisms during this process to prevent prolonged and extensive inflammation. The inflammatory stimulators themselves or products of inflammatory cells may induce the expression of negative feedback regulators, such as suppressor of cytokine signaling (SOCS)-family proteins, antioxidant enzymes, and antiinflammatory cytokines. Furthermore, death of activated microglia (major inflammatory cells in the brain) may regulate brain inflammation. Astrocytes, the most abundant cells in the brain, may also act in preventing microglial overactivation. Therefore, we propose that the extent and duration of brain inflammation is tightly regulated through the cooperation of multiple mechanisms to maximize antipathogenic effects and minimize tissue damage. © 2007 Wiley-Liss, Inc. [source] Gene therapy for rheumatoid arthritisTHE JOURNAL OF GENE MEDICINE, Issue 6 2002Natacha Bessis Abstract Rheumatoid arthritis (RA) is a severe autoimmune systemic disease. Chronic synovial inflammation results in destruction of the joints. No conventional treatment is efficient in RA. Gene therapy of RA targets mainly the players of inflammation or articular destruction: TNF-, or IL-1 blocking agents (such as anti-TNF-, monoclonal antibodies, soluble TNF-, receptor, type II soluble receptor of IL-1, IL-1 receptor antagonist), antiinflammatory cytokines (such as IL-4, IL-10, IL-1), and growth factors. In this polyarticular disease, the vector expressing the therapeutic protein can be administered as a local (intra-articular injection) or a systemic treatment (extra-articular injection). All the main vectors have been used in experimental models, including the more recent lentivirus and adeno-associated virus. Ex vivo gene transfer was performed with synovial cells, fibroblasts, T cells, dendritic cells, and different cells from xenogeneic origin. In vivo gene therapy is simpler, although a less controlled method. Clinical trials in human RA have started with ex vivo retrovirus-expressing IL-1 receptor antagonists and have demonstrated the feasibility of the strategy of gene therapy. The best target remains to be determined and extensive research has to be conducted in preclinical studies. Copyright © 2002 John Wiley & Sons, Ltd. [source] Blocking ERK-1/2 reduces tumor necrosis factor ,,induced interleukin-18 bioactivity in rheumatoid arthritis synovial fibroblasts by induction of interleukin-18 binding protein AARTHRITIS & RHEUMATISM, Issue 3 2010Hubert Marotte Objective To examine the mechanism of regulation of interleukin-18 (IL-18) bioactivity by IL-18 binding protein (IL-18BP) induction. Methods Levels of IL-18 and IL-18BPa in synovial fluid samples from patients with osteoarthritis (OA) or rheumatoid arthritis (RA) were determined by enzyme-linked immunosorbent assays (ELISAs), followed by calculation of free IL-18. IL-18 and IL-18BPa synthesis in RA synovial fibroblasts that had been treated with proinflammatory and antiinflammatory cytokines were assessed by quantitative real-time polymerase chain reaction and ELISA, respectively, followed by IL-18 bioactivity determination using KG-1 cells. Chemical signaling inhibitors were used for determination of the signal transduction pathways involved in IL-18BPa/IL-18 regulation. Tumor necrosis factor , (TNF,),induced caspase 1 activity was determined by a colorimetric assay. Results IL-18BPa was lower in RA synovial fluid than in OA synovial fluid (P < 0.05; n = 8), and free IL-18 was higher in RA synovial fluid than in OA synovial fluid. TNF, induced RA synovial fibroblast IL-18BPa and IL-18 in a time-dependent manner (P < 0.05). Evaluation of signaling pathways suggested that TNF, induced IL-18 production through the ERK-1/2, protein kinase C, (PKC,), and Src pathways, whereas IL-18BPa synthesis was mediated through the NF,B, PKC, Src, and JNK pathways. Furthermore, addition of exogenous IL-18BPa-Fc reduced the RA synovial fibroblast phosphorylation of ERK-1/2 induced by TNF,. Conclusion These results suggest that IL-18BPa reduces IL-18 bioactivity induced by TNF,, by regulating the ERK-1/2 pathway in RA synovial fibroblasts. Targeting IL-18 bioactivity by induction or addition of IL-18BPa may provide another therapeutic option in the management of RA. [source] Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritisARTHRITIS & RHEUMATISM, Issue 10 2009Timothy M. Griffin Objective To test the hypothesis that obesity resulting from deletion of the leptin gene or the leptin receptor gene results in increased knee osteoarthritis (OA), systemic inflammation, and altered subchondral bone morphology. Methods Leptin-deficient (ob/ob) and leptin receptor,deficient (db/db) female mice compared with wild-type mice were studied, to document knee OA via histopathology. The levels of serum proinflammatory and antiinflammatory cytokines were measured using a multiplex bead immunoassay. Cortical and trabecular subchondral bone changes were documented by microfocal computed tomography, and body composition was quantified by dual x-ray absorptiometry. Results Adiposity was increased by ,10-fold in ob/ob and db/db mice compared with controls, but it was not associated with an increased incidence of knee OA. Serum cytokine levels were unchanged in ob/ob and db/db mice relative to controls, except for the level of cytokine-induced neutrophil chemoattractant (keratinocyte chemoattractant; murine analog of interleukin-8), which was elevated. Leptin impairment was associated with reduced subchondral bone thickness and increased relative trabecular bone volume in the tibial epiphysis. Conclusion Extreme obesity due to impaired leptin signaling induced alterations in subchondral bone morphology without increasing the incidence of knee OA. Systemic inflammatory cytokine levels remained largely unchanged in ob/ob and db/db mice. These findings suggest that body fat, in and of itself, may not be a risk factor for joint degeneration, because adiposity in the absence of leptin signaling is insufficient to induce systemic inflammation and knee OA in female C57BL/6J mice. These results imply a pleiotropic role of leptin in the development of OA by regulating both the skeletal and immune systems. [source] Treatment of Distal Colitis with Local Anaesthetic AgentsBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2002Stellan Björck The original observation was an adrenergic hyperinnervation of the inflamed mucosa (hyperinnervation hypothesis). In order to silence local nervous reflexes, the mucosa was treated topically with 2% lidocaine gel. The clinical results are promising and no side effects have been observed. The relapse rate is relatively high and related to the duration of treatment. In studies of experimental colitis a potential antagonism between harmful adrenergic nerves (vasoconstrictor substances and proinflammatory cytokines) and mucosa-protective visceral afferents (antiinflammatory cytokines) in the pathogenesis of colitis is intriguing. Other studies have emphasized the importance of neutrophils for causing damage to the colon epithelium (neutrophil hypothesis) and local anaesthetics have potent effects on several steps of the inflammatory response in addition to the nervous blockade. [source] Modulation of ultraviolet-induced hyperalgesia and cytokine upregulation by interleukins 10 and 13BRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2000Nayef E Saadé Exposure to midrange ultraviolet radiation (UVB) is known to produce skin inflammation similar to sunburn. The aim of this study was to characterize the hyperalgesia and cytokine upregulation induced by UVB and their modulation by antiinflammatory cytokines. Acute exposure of the dorsal skin of mice to UVB (200, 250 and 300 mJ cm2) resulted in a dose-dependent decrease in the latencies of the hot plate and tail flick tests, without evident signs of skin lesions. The observed hyperalgesia displayed a biphasic temporal evolution with an acute phase (3,6 h) and a late (48,96 h) phase. Exposure to UVB (300 mJ cm2) elicited significant upregulation of interleukin (IL)-1,, tumour necrosis factor (TNF)-, and nerve growth factor (NGF), determined by ELISA in the exposed skin. This upregulation was more important during the acute phase of hyperalgesia. Daily treatment of mice, with i.p. injections of either IL-10 or IL-13 (1.5, 7.5 and 15 ng in 100 ,l saline) produced a dose-dependent attenuation of the UVB-induced hyperalgesia. Treatment with the highest doses of either IL-10 or IL-13, produced significant attenuation of the levels of the cytokines and NGF by UVB, with relatively more pronounced effects by IL-13. Acute exposure to moderate amounts of UVB results in a systemic hyperalgesia related to the upregulation of cytokine and NGF levels, since both were prevented by treatment with antiinflammatory cytokines. British Journal of Pharmacology (2000) 131, 1317,1324; doi:10.1038/sj.bjp.0703699 [source] |