Home About us Contact | |||
Antigen Presentation (antigen + presentation)
Selected AbstractsAntigen Presentation by Human Uterine Epithelial Cells to Autologous T CellsAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2006John V. Fahey Problem, Epithelial cells, as sentinels of immune protection in the endometrium, use innate immune mechanisms to protect against infection from pathogenic microbes. Our goal in this study was to assess the ability of human uterine epithelial cells to present antigen to cells of the adaptive immune system. Method of study, Highly purified preparations of uterine epithelial cells from 11 patients were assessed for their ability to present tetanus toxoid (TT) to autologous T cells. Leukocyte contamination in the epithelial cell preparations was numerically and functionally determined. Using confocal microscopy, epithelial cells were tested for the expression of CD40 and CD1d. Results, Purified preparations of endometrial epithelial cells isolated from every patient presented TT recall antigen to autologous T cells. Leukocyte contamination of epithelial cell preparations was insignificant. Uterine epithelial cells express CD40 and CD1d. Conclusion, Antigen presentation is an additional aspect of uterine epithelial cell function in maintaining women's health. [source] Antigen presentation and dendritic cell biology in malariaPARASITE IMMUNOLOGY, Issue 1-2 2006M. M. STEVENSON SUMMARY Dendritic cells (DCs) are important both in amplifying the innate immune response and in initiating adaptive immunity and shaping the type of T helper (Th) response. Although the role of DCs in immune responses to many intracellular pathogens has been delineated and research is underway to identify the mechanisms involved, relatively little is known concerning the role of DCs in immunity to malaria. In this review, we provide an overview and summary of previous and current studies aimed to investigate the role of DCs as antigen presenting cells (APCs). In addition, the role of DCs in inducing innate and adaptive immunity to blood-stage malaria is discussed and, where information is available, the mechanisms involved are presented. Data from studies in humans infected with Plasmodium falciparum, the major human parasite responsible for the high morbidity and mortality associated with malaria throughout many regions of the developing world, as well as data from experimental mouse models are presented. Overall, the data from these studies are conflicting. The possible reasons for these differences, including the use of different parasite species and parasite strains in the mouse studies, are discussed. Nevertheless, together the data have important implications for development of an effective malaria vaccine since the selection of appropriate Plasmodium antigens and/or adjuvants, targeting innate immune responses involving DCs, may provide optimal protection against malaria. It is hoped that this review promotes more investigation among malariologists and immunologists alike on DCs and malaria. [source] Antigen Presentation by Human Uterine Epithelial Cells to Autologous T CellsAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2006John V. Fahey Problem, Epithelial cells, as sentinels of immune protection in the endometrium, use innate immune mechanisms to protect against infection from pathogenic microbes. Our goal in this study was to assess the ability of human uterine epithelial cells to present antigen to cells of the adaptive immune system. Method of study, Highly purified preparations of uterine epithelial cells from 11 patients were assessed for their ability to present tetanus toxoid (TT) to autologous T cells. Leukocyte contamination in the epithelial cell preparations was numerically and functionally determined. Using confocal microscopy, epithelial cells were tested for the expression of CD40 and CD1d. Results, Purified preparations of endometrial epithelial cells isolated from every patient presented TT recall antigen to autologous T cells. Leukocyte contamination of epithelial cell preparations was insignificant. Uterine epithelial cells express CD40 and CD1d. Conclusion, Antigen presentation is an additional aspect of uterine epithelial cell function in maintaining women's health. [source] HLA,B27,restricted antigen presentation by human chondrocytes to CD8+ T cells: Potential contribution to local immunopathologic processes in ankylosing spondylitisARTHRITIS & RHEUMATISM, Issue 6 2009Maren Kuhne Objective Analysis of the histopathologic features of hip arthritis in patients with ankylosing spondylitis (AS) has revealed accumulation of infiltrating mononuclear cells in the bone end plate and presence of hyaline articular cartilage that is not found in areas of total cartilage destruction. This study was undertaken to assess whether chondrocytes attract lymphocytes and whether cartilage chondrocytes from patients with AS have the potential to directly stimulate T cells in an HLA-restricted manner. Methods Human HLA,B27+ T cell lines, specific for the Epstein-Barr virus,derived peptide EBNA258,266, and autologous chondrocytes, serving as nonprofessional antigen-presenting cells (APCs), were available for use in a model system to study chondrocyte functions in femoral head joint cartilage of patients with AS. Peptide functionality of cytotoxic T cells was assessed by flow cytometry, and cellular interactions were detected by fluorescence confocal microscopy. Results When maintained in an alginate matrix, chondrocytes isolated from the femoral heads of patients with AS constitutively expressed type II collagen and CD80. When pulsed with the EBNA258,266 peptide, autologous chondrocytes functioned as APCs and, specifically, induced interferon-, production in CD8+ T cells. In mixed chondrocyte,T cell cultures, cell,cell contacts were dependent on the presence of the EBNA258,266 peptide. T cells adjacent to chondrocytes produced perforin and granzyme B; both molecules were found in focal aggregates, a prerequisite for antigen-specific lysis of target cells. Conclusion Antigen presentation through human chondrocytes allows the stimulation of peptide-specific CD8+ T cells. These results indicate that human chondrocytes can act as nonprofessional APCs, and suggest that there is an interferon-,,triggered autocrine loop of immune cell,mediated chondrocyte activation in the already inflamed environment. Thus, local HLA-dependent activation of peptide-specific cytotoxic CD8+ T cells by chondrocytes might contribute to inflammatory processes in the spondylarthritides. [source] Extracellular ATP, P2 receptors, and inflammationDRUG DEVELOPMENT RESEARCH, Issue 1 2003Francesco Di Virgilio Abstract Over the past few years, P2 receptors have emerged as new potential players in the early phases of inflammation in their function of chemotactic receptors, triggers of proinflammatory cytokine release, and cytotoxic molecules. However, more recent data suggest that the role of P2 receptors in immunity is much more widespread and touches the very heart of the initiation of the immune response, i.e., antigen presentation by dendritic cells. Drug Dev. Res. 59:171,174, 2003. © 2003 Wiley-Liss, Inc. [source] IgG2 containing IgM,IgG immune complexes predominate in normal human plasma, but not in plasma of patients with warm autoimmune haemolytic anaemiaEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 3 2006Dorothea Stahl Abstract:, The different physicochemical and sterical properties of IgG subclasses may favour a selective enrichment of defined IgG subclasses in IgM,IgG immune complexes (IC) of human plasma under physiological conditions. Such enrichment of IgG subclasses in IgM,IgG IC of plasma may differ from the normal IgG subclass distribution in plasma itself, and contribute to the physiological functions of IgM,IgG IC. Systematic studies on the IgG subclass distribution in IgM,IgG IC in humans are lacking. Using specific analytical techniques to characterise IgM,IgG IC in human plasma (i.e. fast protein liquid chromatography, enzyme-linked immunosorbent assay, affinity biosensor technology), and taking warm autoimmune haemolytic anaemia (WAIHA) of humans as a disease model, we here demonstrate that: (i) IgG2 is the predominant IgG subclass in IgM,IgG IC under physiological conditions, (ii) the predominance of IgG2 within IgM,IgG IC may get lost in polyclonal IgG-mediated autoimmune disease and (iii) the IgG subclass distribution in IgM,IgG IC influences the interaction between IC and blood cells involved in antigen presentation. The data presented here therefore extend the physiological function of IgG2, which is the protective immune response towards carbohydrate antigens in bacterial infections, and suggest IgG2-dependent regulation of immune responses to self-immunoglobulin in humans. The disturbed IgG subclass distribution in IgM,IgG IC of patients with WAIHA might influence activity of self-reactive B cells involved in the pathophysiology of the disease. [source] Stress for maintaining memory: HSP70 as a mobile messenger for innate and adaptive immunityEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2010Taoyong Chen Abstract HSP are abundant and conserved proteins present in all cells. Upon temperature shock or other stress stimuli, HSP are synthesized intracellularly, which may protect cells from protein denaturation or from death. Although HSP are synthesized intracellularly, HSP can also be mobilized to the plasma membrane or even be released under stress conditions. Elucidating the roles of cell surface and extracellular HSP in immune regulation has attracted much attention in recent years. Extracellularly, HSP can serve a cytokine function to initiate both innate and adaptive immunity through activation of APC. HSP serves also a chaperone function and facilitates presentation of antigen peptide to T cells. Similarly, cell surface HSP may activate APC and promote antigen presentation through cell,cell contact. A study in this issue of the European Journal of Immunology demonstrates that cell surface HSP70 on DC induced by stress can upregulate membrane-associated IL-15, which in turn promotes the proliferation of CD4+CD45RA memory T cells. Moreover, a DC-CD4+ T-cell interacting circuit formed by CD40L on T cells and CD40 on DC is proposed to play a role in the maintenance of memory homeostasis. This study has widened our view of HSP in adaptive immunity as well as their classical functions such as APC activator and antigen carrier. [source] Diverse regulatory roles for lysosomal proteases in the immune responseEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2009Jeff D. Colbert Abstract The innate and adaptive immune system utilise endocytic protease activity to promote functional immune responses. Cysteine and aspartic proteases (cathepsins) constitute a subset of endocytic proteases, the immune function of which has been described extensively. Although historically these studies have focused on their role in processes such as antigen presentation and zymogen processing within the endocytic compartment, recent discoveries have demonstrated a critical role for these proteases in other intracellular compartments, and within the extracellular milieu. It has also become clear that their pattern of expression and substrate specificities are more diverse than was first envisaged. Here, we discuss recent advances addressing the role of lysosomal proteases in various aspects of the immune response. We pay attention to reports demonstrating cathepsin activity outside of its canonical endosome/lysosome microenvironment. [source] Requirement of phospholipase C-,2 (PLC,2) for Dectin-1-induced antigen presentation and induction of TH1/TH17 polarizationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2009Ilaria Tassi Abstract DC recognize microbial components through an array of receptors known as PRR. PRR initiate intracellular signals, which engender DC with the capacity to stimulate T-cell responses. Dectin-1 is a PRR that recognizes ,-glucan, a major constituent of many fungi's outer cell wall. Here we show that Dectin-1 activates DC through phospholipase (PLC),2 signaling. PLC,2-deficient DC were unable to expand antigen-specific T cells and induce TH1 and TH17 differentiation in response to ,-glucan. Mechanistically, PLC,2-deficiency impaired the capacity of DC to secrete polarizing cytokines following exposure to ,-glucan. Dectin-1 required PLC,2 to activate MAPK, AP-1 and NF-,B, which induce cytokine gene expression. Moreover, PLC,2 controlled Dectin-1-mediated NFAT activation and induction of NFAT-dependent genes such as IL-2, cyclooxigenase-2 and Egr transcription factors. We conclude that PLC,2 is a crucial signaling mediator that modifies DC gene expression program to activate DC responses to ,-glucan-containing pathogens. [source] Microsomal triglyceride transfer protein regulates endogenous and exogenous antigen presentation by group,1 CD1 moleculesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2008Arthur Kaser Abstract Lipid antigens are presented to T cells by the non-polymorphic MHC class,I-related CD1 molecules. Microsomal triglyceride transfer protein (MTP) is an endoplasmic reticulum (ER)-resident chaperone that has been shown to lipidate the group,2 CD1 molecule CD1d and thus to regulate its function. We now report that MTP also regulates the function of group,1 CD1 molecules CD1a, CD1b, and CD1c. Pharmacological inhibition of MTP in monocyte-derived dendritic cells and lymphoblastoid B cell lines transfected with group,1 CD1 resulted in a substantial decrease in endogenous self lipid antigen presentation to several CD1-restricted T cell lines. Silencing MTP expression in CD1c-transfected HeLa cells similarly resulted in decreased self reactivity. Unexpectedly, inhibition of ER-resident MTP, which was confirmed by confocal microscopy, also markedly decreased presentation of exogenous, endosomally loaded, mycobacterial lipid antigens by CD1a and CD1c to T cells. Thus, these studies indicate that MTP, despite its ER localization, regulates endogenous as well as exogenous lipid antigen presentation, and suggest a broad role for MTP in the regulation of CD1 antigen presentation. [source] Increased TLR responses in dendritic cells lacking the ITAM-containing adapters DAP12 and FcR,EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2008Ching-Liang Chu Dr. Abstract The inhibitory effect of DAP12 on macrophages has been revealed by examining myeloid cells from DAP12-deficient mice. In this report, we demonstrate that both DAP12 and the Fc,RI,-chain (FcR,) are required for negative regulation of TLR responses in bone marrow-derived dendritic cells (DC). Loss of both DAP12 and FcR, enhanced the pro-inflammatory cytokine production and maturation of DC after TLR stimulation, resulting in a greater percentage of DC that produced IL-12 p40, TNF, and IL-6, and expressed high levels of MHC class II, CD80, and CD86. Whereas DC lacking only DAP12 showed some increased TLR responses, those lacking only FcR, had a greater enhancement of maturation and cytokine production, though to a lesser extent than DC lacking both DAP12 and FcR,. Additionally, antigen-specific T cell proliferation was enhanced by DAP12,/,FcR,,/, DC relative to wild-type DC after maturation. Similar to DAP12,/,FcR,,/, DC, Syk-deficient DC also had increased inflammatory cytokine production, maturation, and antigen presentation. These results confirm the inhibitory effect of immunoreceptor tyrosine-based activation motif (ITAM) signaling in myeloid cells and show that DC and macrophages differ in their dependence on the ITAM-containing adapters DAP12 and FcR, for negative regulation of TLR signaling. [source] Dendritic cells: Understanding immunogenicityEUROPEAN JOURNAL OF IMMUNOLOGY, Issue S1 2007Ralph Abstract The impetus for the discovery of dendritic cells in 1972 was to understand immunogenicity, the capacity of an antigenic substance to provoke immunity. During experiments to characterize "accessory" cells that enhanced immunity, we spotted unusual stellate cells in mouse spleen. They had a distinct capacity to form and retract processes or dendrites and were named dendritic cells (DC). DC proved to be different from other cell types and to be peculiarly immunogenic when loaded with antigens. When Langerhans cells were studied, immunogenicity was found to involve two steps: antigen presentation by immature DC and maturation to elicit immunity. Antigen-bearing DC were also immunogenic in vivo and were therefore termed "nature's adjuvants". Several labs then learned to generate large numbers of DC from progenitors, which accelerated DC research. Tolerogenicity via DC, including the control of foxp3+ suppressor T cells, was recently discovered. Two areas of current research that I find intriguing are to identify mechanisms for antigen uptake and processing, and for the control of different types of immunity and tolerance. These subjects should be studied in vivo with clinically relevant antigens, so that the activities of DC can be better integrated into the prevention and treatment of disease in patients. [source] Extensive HLA class I allele promiscuity among viral CTL epitopesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2007Nicole Frahm Abstract Promiscuous binding of T helper epitopes to MHC class II molecules has been well established, but few examples of promiscuous class I-restricted epitopes exist. To address the extent of promiscuity of HLA class I peptides, responses to 242 well-defined viral epitopes were tested in 100 subjects regardless of the individuals' HLA type. Surprisingly, half of all detected responses were seen in the absence of the originally reported restricting HLA class I allele, and only 3% of epitopes were recognized exclusively in the presence of their original allele. Functional assays confirmed the frequent recognition of HLA class I-restricted T cell epitopes on several alternative alleles across HLA class I supertypes and encoded on different class I loci. These data have significant implications for the understanding of MHC class I-restricted antigen presentation and vaccine development. [source] Mediastinal lymph node CD8,, DC initiate antigen presentation following intranasal coadministration of ,-GalCerEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2007Sung-Youl Ko Abstract Our previous study revealed that ,-galactosylceramide (,-GalCer) is a potent nasal vaccine adjuvant inducing both potent humoral and cellular immune responses and affording complete protection against viral infections and tumors. However, the antigen-presenting cells (APC) that are activated by NKT cells and thereby initiate the immune responses following intranasal coadministration of protein antigen and ,-GalCer are poorly understood. We assessed here where antigen presentation occurs and which APC subset mediates the early stages of immune responses when protein antigen and ,-GalCer are intranasally administered. We show that dendritic cells (DC), but not B cells, initiated the mucosal immune responses at mediastinal lymph nodes. Of the DC subsets, the CD8,,B220,CD11c+ DC subset played the most prominent role in the direct and cross-presentation of protein antigen to naive T cells and in triggering the naive T cells to differentiate into effector T cells. This might be mainly caused by a relatively larger population of CD1dhigh cells of CD8,,B220,CD11c+ DC subset than those of other DC subsets. These results indicate that CD8,,B220,CD11c+ DC is the principal subset becoming immunogenic after interaction with NKT cells and abrogating tolerance to intranasally administered protein antigen when ,-GalCer is coadministered as a nasal vaccine adjuvant. [source] Differential alteration of lipid antigen presentation to NKT cells due to imbalances in lipid metabolismEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2007Jens Schümann Abstract Deficiencies in enzymes of the lysosomal glycosphingolipid degradation pathway or in lysosomal lipid transfer proteins cause an imbalance in lipid metabolism and induce accumulation of certain lipids. A possible impact of such an imbalance on the presentation of lipid antigens to lipid-reactive T cells has only been hypothesized but not extensively studied so far. Here we demonstrate that presentation of lipid antigens to, and development of, lipid-reactive CD1d-restricted NKT cells, are impaired in mice deficient in the lysosomal enzyme ,-galactosidase (,Gal) or the lysosomal lipid transfer protein Niemann-Pick C (NPC) 2. Importantly, the residual populations of NKT cells selected in ,Gal,/, and NPC2,/, mice showed differential TCR and CD4 repertoire characteristics, suggesting that differential selecting CD1d:lipid antigen complexes are formed. Furthermore, we provide direct evidence that accumulation of lipids impairs lipid antigen presentation in both cases. However, the mechanisms by which imbalanced lipid metabolism affected lipid antigen presentation were different. Based on these results, the impact of lipid accumulation should be generally considered in the interpretation of immunological deficiencies found in mice suffering from lipid metabolic disorders. [source] Priming of CD8+ T cell responses by pathogens typically depends on CD70-mediated interactions with dendritic cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2007Anita Schildknecht Abstract The CD27/CD70-interaction has been shown to provide a costimulatory and survival signal for T cells in vitro and in vivo. Recently, CD70 expression by DC was found to be important for the priming of CD8+ T cells. We show here that blocking CD70 interactions has a significant impact on priming of CD8+ T cell responses by vaccinia virus (VV), Listeria monocytogenes and vesicular stomatitis virus (VSV) in mice. However, the priming of specific CD8+ T cells upon infection with lymphocytic choriomeningitis virus (LCMV) was only marginally reduced by CD70-blockade. Blocking of CD70 prevented CD8+ T cell priming in DIETER mice, a model in which presentation of LCMV-derived epitopes can be induced selectively in dendritic cells (DC). In contrast, CD70-CD27 interactions were not important for the priming of VSV-specific CD4+ T cells or class switch of neutralizing antibodies. As we show that priming of CD8+ T cells by the pathogens used here is dependent on antigen presentation by DC and that infection results in up-regulation of CD70 on DC, we conclude that CD70 expression on DC plays an important role in the priming of CD8+ T cells by pathogens. Moreover, the lack of CD70 cannot be completely compensated for by other costimulatory molecules. [source] Inhibition of CD1d1-mediated antigen presentation by the vaccinia virus B1R and H5R moleculesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2006Roberts Webb, Tonya Abstract Vaccinia virus (VV) has been most commonly used as the vaccine to protect individuals against the causative agent of smallpox (variola virus), but it also uses a number of strategies meant to evade or blunt the host's antiviral immune response. Natural killer T (NKT) cells are a subset of immunoregulatory CD1d-restricted T lymphocytes believed to bridge the innate and adaptive immune responses. It is shown here that the VV-encoded molecules, B1R and H5R, play a role in the ability of VV to inhibit CD1d-mediated antigen presentation to NKT cells. These are the first poxvirus-encoded molecules identified that can play such a role in the evasion of an important component of the innate immune response. [source] Specific ICAM-3 grabbing nonintegrin-related 1 (SIGNR1) expressed by marginal zone macrophages is essential for defense against pulmonary Streptococcuspneumoniae infectionEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2005Estella Abstract The dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) homolog, SIGN-related 1 (SIGNR1) is a pathogen receptor expressed by splenic marginal zone and peritoneal macrophages, and is essential for clearance of Streptococcus pneumoniae by phagocytosis after intraperitoneal infection. Here, we identified an important in vivo function for SIGNR1 in S.pneumonia infection induced via its natural entrance route. Upon intranasal infection with S. pneumoniae, SIGNR1-deficient mice did not clear bacteria from lung and blood, and displayed severely enhanced inflammatory parameters compared to the wild-type mice. However, SIGNR1 is not expressed by alveolar macrophages, suggesting that another mechanism than a decrease in phagocytosis is responsible for this difference. Natural anti-phosphorylcholine IgM produced by marginal zone B cells is essential for protection against infection with S. pneumoniae. Strikingly, during infection, SIGNR1-deficient mice failed to produce a rapid anti-phosphorylcholine IgM response. Marginal zone macrophages have been suggested to capture antigens for presentation to marginal zone B cells. We demonstrate that marginal zone macrophages from SIGNR1-deficient mice in contrast to wild-type mice are not able to capture pneumococci from blood, suggesting that SIGNR1 on marginal zone macrophages captures S. pneumoniae for antigen presentation to and activation of marginal zone B cells, resulting in an anti-phosphorylcholine IgM response. [source] The Toll-like receptor ligand MALP-2 stimulates dendritic cell maturation and modulates proteasome composition and activityEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2004Claudia Link Abstract A 2-kDa synthetic derivative of the macrophage-activating lipopeptide (MALP-2) from Mycoplasma fermentans is a potent inducer of monocytes/macrophages and improves the immunogenicity of antigens co-administered by systemic and mucosal routes. Dendritic cells (DC) are the most potent antigen-presenting cells, which are able to prime naive T cells in vivo. To elucidate the underlying mechanisms of MALP-2 adjuvanticity, we analyzed its activity on bone marrow-derived murine DC. In vitro stimulation of immature murine DC with MALP-2 resulted in the induction of maturation with up-regulated expression of MHC class II, costimulatory (CD80, CD86) and adhesion (CD40, CD54) molecules. MALP-2 also enhances the secretion of cytokines (IL-1,, IL-6 and IL-12), and increases DC stimulatory activity on naive and antigen-specific T cells. Further studies demonstrated that MALP-2 treatment of DC results in a dose-dependent shift from the protein pattern of proteasomes to immunoproteasomes (up-regulation of LMP2, LMP7 and MECL1), which correlates with an increased proteolytic activity. Thus, the adjuvanticity of MALP-2 can be mediated, at least in part, by the stimulation of DC maturation, which in turn leads to an improved antigen presentation. Therefore, MALP-2 is a promising molecule for the development of immune therapeutic or prophylactic interventions. [source] The cytoplasmic tail of invariant chain modulates antigen processing and presentationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2003Abstract The MHC class II-associated invariant chain (Ii) has several important functions in antigen presentation. In this study, we have examined the effect of Iip33 expression on endocytic transport and antigen presentation. We find that degradation of both endocytosed antigen and Ii itself is delayed in cells expressing high levels of Ii, whereas a mutant Ii with an altered charge distributionin the cytoplasmic tail was unable to exert this effect. Furthermore, the Ii mutant did not enhance the presentation of an Ii-dependent MHC class II-restricted epitope to the same extent as the wild type. In a parallel study, we investigated the effect of charge in the cytoplasmic tail of Ii. We find that due to exposed negative charges, it promotes endosome fusion events, and we suggest thatthis causes endosomal retention (Nordeng et al., Mol. Biol. Cell 2002). Together, the data reveal an additional property of the Iip33 cytoplasmic tail that contributes to the modulation of antigen processing and presentation. [source] Expression of the human Cathepsin L inhibitor hurpin in mice: skin alterations and increased carcinogenesisEXPERIMENTAL DERMATOLOGY, Issue 9 2007Markus Walz Abstract:, The serine protease inhibitor (serpin) hurpin (serpin B13) is a cross class-specific inhibitor of the cysteine protease Cathepsin (Cat) L. Cat L is involved in lysosomal protein degradation, hair follicle morphogenesis, epidermal differentiation and epitope generation of antigens. Hurpin is a 44 kDa protein which is expressed predominantly in epidermal cells. In psoriatic skin samples, hurpin was strongly overexpressed when compared with normal skin. Keratinocytes overexpressing hurpin showed increased resistance towards UVB-induced apoptosis. To further analyse the functional importance of this inhibitor, we have generated transgenic mice with deregulated Cat L activity by expressing human hurpin in addition to the endogenous mouse inhibitor. The three independent transgenic lines generated were characterized by identical effects excluding insertional phenotypes. Macroscopically, mice expressing human hurpin are characterized by abnormal abdominal fur. The number of apoptotic cells and caspase-3 positive cells was reduced after UV-irradiation in transgenic animals compared with wild-type mice. Interestingly, after chemical carcinogenesis, transgenic mice showed an increased susceptibility to develop skin cancer. Array analysis of gene expression revealed distinct differences between wild-type and hurpin-transgenic mice. Among others, differentially expressed genes are related to antigen presentation and angiogenesis. These results suggest an important role of Cat L regulation by hurpin which might be of clinical relevance in human skin diseases. [source] The Vps4 C-terminal helix is a critical determinant for assembly and ATPase activity and has elements conserved in other members of the meiotic clade of AAA ATPasesFEBS JOURNAL, Issue 7 2008Parimala R. Vajjhala Sorting of membrane proteins into intralumenal endosomal vesicles, multivesicular body (MVB) sorting, is critical for receptor down regulation, antigen presentation and enveloped virus budding. Vps4 is an AAA ATPase that functions in MVB sorting. Although AAA ATPases are oligomeric, mechanisms that govern Vps4 oligomerization and activity remain elusive. Vps4 has an N-terminal microtubule interacting and trafficking domain required for endosome recruitment, an AAA domain containing the ATPase catalytic site and a , domain, and a C-terminal , helix positioned close to the catalytic site in the 3D structure. Previous attempts to identify the role of the C-terminal helix have been unsuccessful. Here, we show that the C-terminal helix is important for Vps4 assembly and ATPase activity in vitro and function in vivo, but not endosome recruitment or interactions with Vta1 or ESCRT-III. Unlike the , domain, which is also important for Vps4 assembly, the C-terminal helix is not required in vivo for Vps4 homotypic interaction or dominant-negative effects of Vps4,E233Q, carrying a mutation in the ATP hydrolysis site. Vta1 promotes assembly of hybrid complexes comprising Vps4,E233Q and Vps4 lacking an intact C-terminal helix in vitro. Formation of catalytically active hybrid complexes demonstrates an intersubunit catalytic mechanism for Vps4. One end of the C-terminal helix lies in close proximity to the second region of homology (SRH), which is important for assembly and intersubunit catalysis in AAA ATPases. We propose that Vps4 SRH function requires an intact C-terminal helix. Co-evolution of a distinct Vps4 SRH and C-terminal helix in meiotic clade AAA ATPases supports this possibility. [source] Regulated expression and intracellular localization of cystatin F in human U937 cellsFEBS JOURNAL, Issue 22 2002Carl-Michael Nathanson Cystatin F is a cysteine peptidase inhibitor recently discovered in haematopoietic cells by cDNA cloning. To further investigate the expression, distribution and properties of the native human inhibitor the promyeloid cell line U937 has been studied. The cells expressed relatively large quantities of cystatin F, which was found both secreted and intracellularly. The intracellular levels were unusually high for a secreted cystatin (, 25% of the cystatin F in 2- or 4-day culture medium). By contrast, U937 cells contained only 3,4% of the related inhibitor, cystatin C. Cystatin F purified from lysates of U937 cells showed three major forms carrying two, one or no carbohydrate chains. Immunocytochemistry demonstrated a marked cytoplasmic cystatin F staining in a granular pattern. Double staining with a marker for endoplasmic reticulum revealed no colocalization for cystatin F. Analysis of the promoter region of the cystatin F gene (CST7) showed that it, like that of the cystatin C gene (CST3), is devoid of typical TATA- and CAAT-box elements. In contrast to the cystatin C promoter, it does not contain multiple Sp1 binding sites, but has a unique site for C/EBP,, possibly explaining the restricted expression of the cystatin F gene. Cells stimulated with all- trans retinoic acid to differentiate them towards a granulocytic pathway, showed a strong (, 18-fold) down-regulation of intracellular cystatin F and almost abolished secreted levels of the inhibitor. Stimulation with tetradecanoyl phorbol acetate, causing monocytic differentiation, also resulted in down-regulation (two fold to threefold) of cystatin F expression, whereas the cystatin C expression was essentially unaltered in both experiments. The results suggest that cystatin F as an intracellular cysteine peptidase inhibitor with readily regulated expression, may be a candidate to control the cysteine peptidase activity known to be essential for antigen presentation in different blood cell lineages. [source] Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a unique reactive phenotypeGLIA, Issue 3 2008Denise van Rossum Abstract Macrophages are key effectors in demyelinating diseases of the central and peripheral nervous system by phagocytosing myelin and releasing immunoregulatory mediators. Here, we report on a distinct, a priori anti-inflammatory reaction of macrophages phagocytosing myelin upon contact with damaged nerve tissue. Macrophages rapidly invaded peripheral (sciatic) and central (optic) nerve tissues in vitro, readily incorporated myelin and expressed high levels of phagocytosis-associated molecules (e.g., Fc and scavenger receptors). In contrast, factors involved in antigen presentation (MHC class-II, CD80, CD86) revealed only a restricted expression. In parallel, a highly ordered appearance of cytokines and chemokines was detected. IL-10, IL-6, CCL22, and CXCL1 were immediately but transiently induced, whereas CCL2, CCL11, and TGF, revealed more persisting levels. Such a profile would attract neutrophils, monocytes/macrophages, and Th2 cells as well as bias for a Th2-supporting environment. Importantly, proinflammatory/Th1-supporting factors, such as TNF,, IL-12p70, CCL3, and CCL5, were not induced. Still the simultaneous presence of TGF, and IL-6 could assist Th17 development, further depending on yet not present IL-23. The release pattern was clearly distinct from reactive phenotypes induced in isolated macrophages and microglia upon treatment with IL-4, IL-13, bacterial lipopolysaccharide, IFN,, or purified myelin. Nerve-exposed macrophages thus commit to a unique functional orientation. © 2007 Wiley-Liss, Inc. [source] The effects of STI571 on antigen presentation of dendritic cells generated from patients with chronic myelogenous leukemiaHEMATOLOGICAL ONCOLOGY, Issue 2 2003Naoko Sato Abstract Chronic myelogenous leukemia is caused by the acquisition of the reciprocal (9;22)(q34;q11) chromosomal translocation in hematopoietic stem cells. The fusion protein showed higher and aberrant tyrosine kinase activity. The inhibition of the tyrosine kinase activity of the protein represents a specific therapeutic strategy for bcr/abl-expressing leukemias. STI571 is a compound of the 2-phenylaminopyrimidine class that selectively inhibits the tyrosine kinase activity of the Abl protein tyrosine kinase. In this study, we evaluated the effects of STI571 on antigen presentation of dendritic cells generated from the patients with CML. The data showed that by the addition of STI571 the dendritic cells derived from CML clone showed an increased expression of CD1a, CD83, CD80 and CD86 by flow cytometry analysis and showed more intense abilities of allogeneic antigen presentation by mixed leukocyte culture, compared with the control cells without STI571. Our results suggested that STI571 not only has a direct cytotoxic effect on bcr-abl gene rearranged cells but also an indirect effect associated with increased anti-leukemic immunological function due to an intensified antigen presentation. Copyright © 2003 John Wiley & Sons, Ltd. [source] Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulationIMMUNOLOGICAL REVIEWS, Issue 1 2007Joshua A. Boyce Summary:, When activated by specific antigen, complement, or other transmembrane stimuli, mast cells (MCs) generate three eicosanoids: prostaglandin (PG)D2, leukotriene (LT)B4, and LTC4, the parent molecule of the cysteinyl leukotrienes (cysLTs). These diverse lipid mediators, which are generated from a single cell membrane-associated precursor, arachidonic acid, can initiate, amplify, or dampen inflammatory responses and influence the magnitude, duration, and nature of subsequent immune responses. PGD2 and cysLTs, which were originally recognized for their bronchoconstricting and vasoactive properties, also serve diverse and pivotal functions in effector cell trafficking, antigen presentation, leukocyte activation, matrix deposition, and fibrosis. LTB4 is a powerful chemoattractant for neutrophils and certain lymphocyte subsets. Thus, MCs can contribute to each of these processes through eicosanoid generation. Additionally, MCs express G-protein-coupled receptors specific for cysLTs, LTB4, and another eicosanoid, PGE2. Each of these receptors can regulate MC functions in vivo by autocrine and paracrine mechanisms. This review focuses on the biologic functions for MC-associated eicosanoids, the regulation of their production, and the mechanisms by which eicosanoids may regulate MC function in host defense and disease. [source] Developing and maintaining protective CD8+ memory T cellsIMMUNOLOGICAL REVIEWS, Issue 1 2006Matthew A. Williams Summary:, A critical aim of vaccine-related research is to identify the mechanisms by which memory T cells are formed and maintained over long periods of time. In recent years, we have designed experiments aimed at addressing two key questions: (i) what are the factors that maintain functionally responsive CD8+ memory cells over long periods of time, and (ii) what are the signals during the early stages of infection that drive the differentiation of long-lived CD8+ memory T cells? We have identified a role for CD4+ T cells in the generation of CD8+ T-cell-mediated protection from secondary challenge. While CD4+ T cells appear to play a role in the programme of CD8 memory, we find that they are also required for the long-term maintenance of CD8+ memory T-cell numbers and function. This property is independent of CD40,CD40L interactions, and we propose a role for CD4+ T cells in maintaining the ability of CD8+ memory T cells to respond to interleukin-7 (IL-7) and IL-15. By manipulating both the time course of infection and the timing of antigen presentation to newly recruited CD8+ T cells, we also demonstrate that the programming of effector and memory potential are at least partially distinct processes. [source] Chemokine receptor-dependent alloresponsesIMMUNOLOGICAL REVIEWS, Issue 1 2003Wayne W. Hancock Summary:, Immunologists have typically viewed alloreactivity schematically as a function of antigen presentation, expansion of alloreactive T and B cells within regional lymphoid tissues, and cellular infiltration and destruction of an allograft. Actual details of the steps between immune activation and accumulation of effector cells within a graft typically have not received much attention. However, just how cells ,know' to move to and migrate within a graft or not is proving to be of increasing interest, as the chemokine-dependent mechanisms underlying leukocyte recruitment to a transplant are dissected. Experimentally, chemokine receptor targeting can prolong or induce permanent allograft survival, despite preservation of alloresponses within secondary lymphoid tissues, whereas current immunosuppressive protocols have only modest effects on chemokine production and leukocyte homing. Recent knowledge of the chemokine-dependent nature of allograft rejection, acceptance, and tolerance induction are presented as a basis for understanding the rationale for preclinical trials of chemokine receptor-targeted therapies currently underway in primate recipients of solid organ allografts. [source] Human cytomegalovirus and natural killer-mediated surveillance of HLA class I expression: a paradigm of host,pathogen adaptationIMMUNOLOGICAL REVIEWS, Issue 1 2001Miguel López-Botet Summary: Among various strategies to evade the host immune response, some viruses like human cytomegalovirus (HCMV) interfere with surface MHC class I expression and antigen presentation to T lymphocytes. The ability of natural killer (NK) cells to detect MHC class I molecules through inhibitory receptors can be envisaged as an adaptation of the immune system for responding to such pathological alterations. To fulfil that role, rodents use members of the Ly49 C-type lectin superfamily, whereas primates employ killer immunoglobulin-like receptors and the immunoglobulin-like transcript 2/leucocyte immunoglobulin-like receptor-1 receptor. CD94/NKG2 lectin-like heterodimers represent the most conserved receptor system for MHC class I molecules; by interacting with human HLA-E or murine Qa-1b, CD94/NKG2A inhibitory receptors broadly probe the biosynthesis pathway of other class I molecules. Reciprocally, HCMV has developed mechanisms to evade the NK response while modulating HLA class Ia expression. The ability of HCMV to maintain surface levels of HLA-E and to express an HLA class I surrogate (UL18) are herein discussed in the context of the interplay with human NKR systems. This work was supported by grants FIS 00/0181 and SAF98-0006. We thank Dr A. Angulo for helpful discussion. [source] Local control of the immune response in the liverIMMUNOLOGICAL REVIEWS, Issue 1 2000Percy A. Knolle Summary: The physiological function of the liver , such as removal of pathogens and antigens from the blood, protein synthesis and metabolism , requires an immune response that is adapted to these tasks and is locally regulated. Pathogenic microorganisms must be efficiently eliminated while the large number of antigens derived from the gastrointestinal tract must be tolerized. From experimental observations it is evident that the liver favours the induction of tolerance rather than the induction of immunity. The liver probably not only is involved in transplantation tolerance but contributes as well to tolerance to orally ingested antigens (entering the liver with portal-venous blood) and to containment of systemic immune responses (antigen from the systemic circulation entering the liver with arterial blood). This review summarizes the experimental data that shed light on the molecular mechanisms and the cell populations of the liver involved in local immune regulation in the liver. Although hepatocytes constitute the major cell population of the liver, direct interaction of hepatocytes with leukocytes in the blood is unlikely. Sinusoidal endothelial cells, which line the hepatic sinusoids and separate hepatocytes from leukocytes in the sinusoidal lumen, and Kupffer cells, the resident macrophage population of the liver, can directly interact with passenger leukocytes. In the liver, clearance of antigen from the blood occurs mainly by sinusoidal endothelial cells through very efficient receptor-mediated endocytosis. Liver sinusoidal endothelial cells constitutively express all molecules necessary for antigen presentation (CD54, CD80, CD86, MHC class I and class II and CD40) and can function as antigen-presenting cells for CD4+ and CD8+ T cells. Thus, these cells probably contribute to hepatic immune surveillance by activation of effector T cells. Antigen-specific T-cell activation is influenced by the local microenvironment. This microenvironment is characterized by the physiological presence of bacterial constituents such as endotoxin and by the local release of immunosuppressive mediators such as interleukin-10, prostaglandin E2 and transforming growth factor-b. Different hepatic cell populations may contribute in different ways to tolerance induction in the liver. In vitro experiments revealed that naive T cells are activated by resident sinusoidal endothelial cells but do not differentiate into effector T cells. These T cells show a cytokine profile and a functional phenotype that is compatible with the induction of tolerance. Besides sinusoidal endothelial cells, other cell populations of the liver, such as dendritic cells, Kupffer cells and perhaps also hepatocytes, may contribute to tolerance induction by deletion of T cells through induction of apoptosis. [source] |