Antibacterial Peptides (antibacterial + peptide)

Distribution by Scientific Domains


Selected Abstracts


Antibacterial peptides: basic facts and emerging concepts

JOURNAL OF INTERNAL MEDICINE, Issue 3 2003
H. G. Boman
Abstract., Boman HG (Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden). Antibacterial peptides: basic facts and emerging concepts (Review). J Intern Med 2003; 254: 197,215. Antibacterial peptides are the effector molecules of innate immunity. Generally they contain 15,45 amino acid residues and the net charge is positive. The cecropin type of linear peptides without cysteine were found first in insects, whilst the defensin type with three disulphide bridges were found in rabbit granulocytes. Now a database stores more than 800 sequences of antibacterial peptides and proteins from the animal and plant kingdoms. Generally, each species has 15,40 peptides made from genes, which code for only one precursor. The dominating targets are bacterial membranes and the killing reaction must be faster than the growth rate of the bacteria. Some antibacterial peptides are clearly multifunctional and an attempt to predict this property from the hydrophobicity of all amino acid side chains are given. Gene structures and biosynthesis are known both in the fruit fly Drosophila and several mammals. Humans need two classes of defensins and the cathelicidin-derived linear peptide LL-37. Clinical cases show that deficiencies in these peptides give severe symptoms. Examples given are morbus Kostmann and atopic allergy. Several antibacterial peptides are being developed as drugs. [source]


Microbial induction of CARD15 expression in intestinal epithelial cells via toll-like receptor 5 triggers an antibacterial response loop,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006
B. Begue
With the discovery of CARD15 as susceptibility gene for Crohn's disease (CD) a first link to a potential defect in the innate immune system was made. In this work we aimed to analyze enterocyte NOD2/CARD15 expression and regulation in response to bacterial motifs and the consequences of the most common CD-specific CARD15 mutation on antibacterial responses of normal intestinal epithelial cells (IEC). Under normal conditions, IEC lines and ileal enterocytes did not express NOD2/CARD15 mRNA or protein, contrary to IEC derived from inflammatory CD sections. In vitro analyses revealed that the simple contact with non-pathogenic commensal E. Coli K12 was sufficient to induced NOD2/CARD15 mRNA and protein in human IEC (HIEC). We identified bacterial flagellin interacting with TLR5 as major motif in this regulation of NOD2/CARD15. E. Coli mutants not expressing flagellin (,FliC) failed to induce CARD15. Similarly, in HIEC transfected with a plasmid encoding dominant negative TLR5, no CARD15 induction was observed after K12 contact. Isolated TLR2 or TLR4 stimulation had no or only a marginal effect on NOD2/CARD15 expression. NOD2/CARD15 negative HIEC were unresponsive to muramyl dipeptide (MDP), but once NOD2/CARD15 was induced, HIEC and Caco2 cells responded to intra or extracellular MDP presentation with the activation of the NFkB pathway. IEC transfected with the Crohn-specific CARD15 mutant (F3020insC, FS) failed to activate NFkB after MDP-challenge, in contrast to CARD15WT IEC. In response to MDP, IEC induced a massive antibacterial peptide (ABP) response, seen in the apical release of CCL20. This was completely abolished in IEC carrying CARD15FS. These data suggest a critical role of NOD2/CARD15 in the bacterial clearance of the intestinal epithelium while CD-specific mutated NOD2/CARD15 causes an impaired epithelial barrier. J. Cell. Physiol. 209: 241,252, 2006. © 2006 Wiley-Liss, Inc. [source]


Structure,activity relationship of an antibacterial peptide, maculatin 1.1, from the skin glands of the tree frog, Litoria genimaculata

JOURNAL OF PEPTIDE SCIENCE, Issue 7 2004
Takuro Niidome
Abstract Maculatin 1.1 (Mac) is a cationic antibacterial peptide isolated from the dorsal glands of the tree frog, Litoria genimaculata, and has a sequence of GLFGVLAKVAAHVVPAIAEHF-NH2. A short peptide lacking the N -terminal two residues of Mac was reported to have no activity. To investigate the structure,activity relationship in detail, several analogs and related short peptides of Mac were synthesized. CD measurement showed that all the peptides took more or less an ,-helical structure in the presence of anionic lipid vesicles. Analogs which are more basic than Mac had strong antibacterial and hemolytic activities, while short peptides lacking one or two terminal residues exhibited weak or no activity. Outer and inner membrane permeabilization activities of the peptides were also reduced with shortening of the peptide chain. These results indicate that the entire chain length of Mac is necessary for full activity, and the basicity of the peptides greatly affects the activity. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd. [source]


Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin

FEBS JOURNAL, Issue 17 2002
Goran Kragol
Members of the proline-rich antibacterial peptide family, pyrrhocoricin, apidaecin and drosocin appear to kill responsive bacterial species by binding to the multihelical lid region of the bacterial DnaK protein. Pyrrhocoricin, the most potent among these peptides, is nontoxic to healthy mice, and can protect these animals from bacterial challenge. A structure,antibacterial activity study of pyrrhocoricin against Escherichia coli and Agrobacterium tumefaciens identified the N-terminal half, residues 2,10, the region responsible for inhibition of the ATPase activity, as the fragment that contains the active segment. While fluorescein-labeled versions of the native peptides entered E. coli cells, deletion of the C-terminal half of pyrrhocoricin significantly reduced the peptide's ability to enter bacterial or mammalian cells. These findings highlighted pyrrhocoricin's suitability for combating intracellular pathogens and raised the possibility that the proline-rich antibacterial peptides can deliver drug leads into mammalian cells. By observing strong relationships between the binding to a synthetic fragment of the target protein and antibacterial activities of pyrrhocoricin analogs modified at strategic positions, we further verified that DnaK was the bacterial target macromolecule. Inaddition, the antimicrobial activity spectrum of native pyrrhocoricin against 11 bacterial and fungal strains and the binding of labeled pyrrhocoricin to synthetic DnaK D-E helix fragments of the appropriate species could be correlated. Mutational analysis on a synthetic E. coli DnaK fragment identified a possible binding surface for pyrrhocoricin. [source]


Genetic features of circular bacteriocins produced by Gram-positive bacteria

FEMS MICROBIOLOGY REVIEWS, Issue 1 2008
Mercedes Maqueda
Abstract This review highlights the main genetic features of circular bacteriocins, which require the co-ordinated expression of several genetic determinants. In general terms, it has been demonstrated that the expression of such structural genes must be combined with the activity of proteins involved in maturation (cleavage/circularization) and secretion outside the cell via different transporter systems, as well as multifaceted immunity mechanisms essential to ensuring the bacteria's self-protection against such strong inhibitors. Several circular antibacterial peptides produced by Gram-positive bacteria have been described to date, including enterocin AS-48, from Enterococcus faecalis S-48 (the first one characterized), gassericin A, from Lactobacillus gasseri LA39, and a similar one, reutericin 6, from Lactobacillus reuteri LA6, butyrivibriocin AR10, from the ruminal anaerobe Butyrivibrio fibrisolvens AR10, uberolysin, from Streptococcus uberis, circularin A, from Clostridium beijerinckii ATCC 25752, and subtilosin A, from Bacillus subtilis. We summarize here the progress made in the understanding of their principal genetic features over the last few years, during which the functional roles of circular proteins with wide biological activity have become clearer. [source]


Cactus-independent nuclear translocation of Drosophila RELISH

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2001
William D. Cornwell
Abstract Insects can effectively and rapidly clear microbial infections by a variety of innate immune responses including the production of antimicrobial peptides. Induction of these antimicrobial peptides in Drosophila has been well established to involve NF-,B elements. We present evidence here for a molecular mechanism of Lipopolysaccharide (LPS)-induced signaling involving Drosophila NF-,B, RELISH, in Drosophila S2 cells. We demonstrate that LPS induces a rapid processing event within the RELISH protein releasing the C-terminal ankyrin-repeats from the N-terminal Rel homology domain (RHD). Examination of the cellular localization of RELISH reveals that the timing of this processing coincides with the nuclear translocation of the RHD and the retention of the ankyrin-repeats within the cytoplasm. Both the processing and the nuclear translocation immediately precede the expression of antibacterial peptide genes cecropin A1, attacin, and diptericin. Over-expression of the RHD but not full-length RELISH results in an increase in the promoter activity of the cecropin A1 gene in the absence of LPS. Furthermore, the LPS-induced expression of these antibacterial peptides is greatly reduced when RELISH expression is depleted via RNA-mediated interference. In addition, loss of cactus expression via RNAi revealed that RELISH activation and nuclear translocation is not dependent on the presence of cactus. Taken together, these results suggest that this signaling mechanism involving the processing of RELISH followed by nuclear translocation of the RHD is central to the induction of at least part of the antimicrobial response in Drosophila, and is largely independent of cactus regulation. J. Cell. Biochem. 82: 22,37, 2001. © 2001 Wiley-Liss, Inc. [source]


Antibacterial peptides: basic facts and emerging concepts

JOURNAL OF INTERNAL MEDICINE, Issue 3 2003
H. G. Boman
Abstract., Boman HG (Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden). Antibacterial peptides: basic facts and emerging concepts (Review). J Intern Med 2003; 254: 197,215. Antibacterial peptides are the effector molecules of innate immunity. Generally they contain 15,45 amino acid residues and the net charge is positive. The cecropin type of linear peptides without cysteine were found first in insects, whilst the defensin type with three disulphide bridges were found in rabbit granulocytes. Now a database stores more than 800 sequences of antibacterial peptides and proteins from the animal and plant kingdoms. Generally, each species has 15,40 peptides made from genes, which code for only one precursor. The dominating targets are bacterial membranes and the killing reaction must be faster than the growth rate of the bacteria. Some antibacterial peptides are clearly multifunctional and an attempt to predict this property from the hydrophobicity of all amino acid side chains are given. Gene structures and biosynthesis are known both in the fruit fly Drosophila and several mammals. Humans need two classes of defensins and the cathelicidin-derived linear peptide LL-37. Clinical cases show that deficiencies in these peptides give severe symptoms. Examples given are morbus Kostmann and atopic allergy. Several antibacterial peptides are being developed as drugs. [source]


The role of tryptophan in the antibacterial activity of a 15-residue bovine lactoferricin peptide

JOURNAL OF PEPTIDE SCIENCE, Issue 4 2001
Bengt Erik Haug
Abstract Bovine lactoferricin is a 25-residue antibacterial peptide isolated after gastric cleavage of the iron transporting protein lactoferrin. A 15-residue fragment, FKCRRWQWRMKKLGA of this peptide sustains most of the antibacterial activity. In this truncated sequence, the two Trp residues are found to be essential for antibacterial activity. The anchoring properties of Trp, as have been observed in membrane proteins, are believed to be important for the interaction of Trp containing antibacterial peptides with bacterial cell membranes. We have investigated the molecular properties which make Trp important for the antibacterial activity of the 15-residue peptide by replacing Trp with natural and unnatural aromatic amino acids. This series of peptides was tested for antibacterial activity against Echerichia coli and Staphylococcus aureus. We found that neither the hydrogen bonding ability nor the amphipathicity of the indole system are essential properties for the effect of Trp on the antibacterial activity of the peptides. Replacement of Trp with residues containing aromatic hydrocarbon side chains gave the most active peptides. We propose that aromatic hydrocarbon residues are able to position themselves deeper into the bacterial cell membrane, making the peptide more efficient in disrupting the bacterial cell membrane. From our results the size, shape and aromatic character of Trp seem to be the most important features for the activity of this class of Trp containing antibacterial peptides. Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd. [source]


Low-molecular-weight post-translationally modified microcins

MOLECULAR MICROBIOLOGY, Issue 6 2007
Konstantin Severinov
Summary Microcins are a class of ribosomally synthesized antibacterial peptides produced by Enterobacteriaceae and active against closely related bacterial species. While some microcins are active as unmodified peptides, others are heavily modified by dedicated maturation enzymes. Low-molecular-weight microcins from the post-translationally modified group target essential molecular machines inside the cells. In this review, available structural and functional data about three such microcins , microcin J25, microcin B17 and microcin C7-C51 , are discussed. While all three low-molecular-weight post-translationally modified microcins are produced by Escherichia coli, inferences based on sequence and structural similarities with peptides encoded or produced by phylogenetically diverse bacteria are made whenever possible to put these compounds into a larger perspective. [source]


Identification of a potent antibacterial factor isolated from bronchoalveolar lavage fluid: guanidine, N -[3-[(aminoiminomethyl)amino]propyl]- N -dodecyl-, a potential source of error in the analysis of antibacterial agents

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 3 2003
Mirna Abraham-Nordling
The widespread use of antibiotics in modern society has encouraged the search for new antibacterial compounds. In this laboratory investigations are being made to identify and characterise novel antibacterial peptides. With this in mind, the antibacterial properties of human bronchoalveolar lavage (BAL) fluid from sarcoidosis patients is being investigated. In this communication we report on the identification and characterisation of a highly active non-peptide antibacterial compound isolated from BAL fluid. The structure of this active compound was elucidated by high-resolution accurate mass and tandem mass spectrometry to be guanidine, N -[3-[(aminoiminomethyl)amino]propyl]- N -dodecyl-. This compound does not appear to be endogenous, and its presence in BAL fluid extracts presents a potential source of error in analysis of antibacterial agents. The biological effects of guanidine, N -[3-[(aminoiminomethyl)amino]propyl]- N -dodecyl- have not previously been described in the literature. Copyright © 2002 John Wiley & Sons, Ltd. [source]


New indolicidin analogues with potent antibacterial activity,

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2004
T.S. Ryge
Abstract:, Indolicidin is a 13-residue antimicrobial peptide amide, ILPWKWPWWPWRR-NH2, isolated from the cytoplasmic granules of bovine neutrophils. Indolicidin is active against a wide range of microorganisms and has also been shown to be haemolytic and cytotoxic towards erythrocytes and human T lymphocytes. The aim of the present paper is two-fold. First, we examine the importance of tryptophan in the antibacterial activity of indolicidin. We prepared five peptide analogues with the format ILPXKXPXXPXRR-NH2 in which Trp-residues 4,6,8,9,11 were replaced in all positions with X = a single non-natural building block; N -substituted glycine residue or nonproteinogenic amino acid. The analogues were tested for antibacterial activity against both Staphylococcus aureus American type culture collection (ATCC) 25923 and Escherichia coli ATCC 25922. We found that tryptophan is not essential in the antibacterial activity of indolicidin, and even more active analogues were obtained by replacing tryptophan with non-natural aromatic amino acids. Using this knowledge, we then investigated a new principle for improving the antibacterial activity of small peptides. Our approach involves changing the hydrophobicity of the peptide by modifying the N-terminus with a hydrophobic non-natural building block. We prepared 22 analogues of indolicidin and [Phe4,6,8,9,11] indolicidin, 11 of each, carrying a hydrophobic non-natural building block attached to the N-terminus. Several active antibacterial analogues were identified. Finally, the cytotoxicity of the analogues against sheep erythrocytes was assessed in a haemolytic activity assay. The results presented here suggest that modified analogues of antibacterial peptides, containing non-natural building blocks, are promising lead structures for developing future therapeutics. [source]


Kostmann syndrome or infantile genetic agranulocytosis, part one: Celebrating 50 years of clinical and basic research on severe congenital neutropenia

ACTA PAEDIATRICA, Issue 12 2006
GÖRAN CARLSSON
Abstract Congenital neutropenia in man was first reported 50 years ago by the Swedish paediatrician Rolf Kostmann. He coined the term "infantile genetic agranulocytosis" for this condition, which is now known as Kostmann syndrome. Recent studies have demonstrated a lack of antibacterial peptides and severe periodontitis in these patients despite recombinant growth factor treatment. Moreover, an increased degree of apoptosis of myeloid progenitor cells in the bone marrow has been shown. Conclusion: Future studies should aim to clarify the underlying molecular genetic defect in Kostmann syndrome. [source]