Antiangiogenic Effects (antiangiogenic + effects)

Distribution by Scientific Domains


Selected Abstracts


Combination of thalidomide and cisplatin in an head and neck squamous cell carcinomas model results in an enhanced antiangiogenic activity in vitro and in vivo

INTERNATIONAL JOURNAL OF CANCER, Issue 8 2007
Gergely P. Vasvari
Abstract Thalidomide is an immunomodulatory, antiangiogenic drug. Although there is evidence that it might be more effective in combination with chemotherapy the exact mechanism of action is unclear. Therefore, we investigated its effect in combination with metronomically applied cisplatin in a xenotransplant mouse model characteristic for advanced head and neck squamous cell carcinomas, its possible synergistic action in vitro, and which tumor-derived factors might be targeted by thalidomide. Although thalidomide alone was ineffective, a combined treatment with low-dose cisplatin inhibited significant tumor growth, proliferation and angiogenesis in vivo as well as migration and tube formation of endothelial cells in vitro. Noteworthy, the latter effect was enhanced after coapplication of cisplatin in nontoxic doses. An inhibitory effect on tumor cell migration was also observed suggesting a direct antitumor effect. Although thalidomide alone did not influence cell proliferation, it augmented antiproliferative response after cisplatin application emphasizing the idea of a potentiated effect when both drugs are combined. Furthermore, we could show that antiangiogenic effects of thalidomide are related to tumor-cell derived factors including vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor and Il-8 some known and with, granulocyte colony stimulating growth factor and granulocyte macrophage colony stimulating growth factor, some new target molecules of thalidomide. Altogether, our findings reveal new insights into thalidomide-mediated antitumor and antiangiogenic effects and its interaction with cytostatic drugs. 2007 Wiley-Liss, Inc. [source]


Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental model

INTERNATIONAL JOURNAL OF CANCER, Issue 8 2007
Sven A. Lang
Abstract The mammalian target of rapamycin (mTOR) has become an interesting target for cancer therapy through its influence on oncogenic signals, which involve phosphatidylinositol-3-kinase and hypoxia-inducible factor-1, (HIF-1,). Since mTOR is an upstream regulator of HIF-1,, a key mediator of gastric cancer growth and angiogenesis, we investigated mTOR activation in human gastric adenocarcinoma specimens and determined whether rapamycin could inhibit gastric cancer growth in mice. Expression of phospho-mTOR was assessed by immunohistochemical analyses of human tissues. For in vitro studies, human gastric cancer cell lines were used to determine S6K1, 4E-BP-1 and HIF-1, activation and cancer cell motility upon rapamycin treatment. Effects of rapamycin on tumor growth and angiogenesis in vivo were assessed in both a subcutaneous tumor model and in an experimental model with orthotopically grown tumors. Mice received either rapamycin (0.5 mg/kg/day or 1.5 mg/kg/day) or diluent per intra-peritoneal injections. In addition, antiangiogenic effects were monitored in vivo using a dorsal-skin-fold chamber model. Immunohistochemical analyses showed strong expression of phospho-mTOR in 60% of intestinal- and 64% of diffuse-type human gastric adenocarcinomas. In vitro, rapamycin-treatment effectively blocked S6K1, 4E-BP-1 and HIF-1, activation, and significantly impaired tumor cell migration. In vivo, rapamycin-treatment led to significant inhibition of subcutaneous tumor growth, decreased CD31-positive vessel area and reduced tumor cell proliferation. Similar significant results were obtained in an orthotopic model of gastric cancer. In the dorsal-skin-fold chamber model, rapamycin-treatment significantly inhibited tumor vascularization in vivo. In conclusion, mTOR is frequently activated in human gastric cancer and represents a promising new molecular target for therapy. 2007 Wiley-Liss, Inc. [source]


Atrial fibrillation and bisphosphonate therapy

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2010
Michael Pazianas
Abstract Bisphosphonates are the most commonly used treatment for osteoporosis and have proven efficacy in the reduction of vertebral and nonvertebral fractures. Recently, concerns have been raised about a possible association between bisphosphonate therapy and atrial fibrillation (AF) following the report of a significant increase in risk of serious AF in women treated with zoledronic acid in the HORIZON study. Subsequent studies have produced conflicting results but have not excluded the possibility of such an association. Currently there is no direct evidence that bisphosphonates exert either acute or chronic effects on cardiac electrophysiology. Nevertheless, altered intracellular electrolyte homeostasis and proinflammatory, profibrotic, and antiangiogenic effects provide potential mechanisms by which atrial conduction could be affected in patients treated with bisphosphonates. In studies in which an increase in risk of AF has been identified, there is no evidence that this translates into increased mortality or increased risk of stroke, and the risk-benefit balance of bisphosphonate therapy in patients with osteoporosis and other forms of metabolic bone disease remains strongly positive. 2010 American Society for Bone and Mineral Research [source]


Tetrathiomolybdate anticopper therapy for Wilson's disease inhibits angiogenesis, fibrosis and inflammation

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 1 2003
G. J. Brewer
Abstract The need for agents to lower body copper in Wilson's disease, a disease which results from copper toxicity has been the driving force for the development of the effective anticopper drugs penicillamine, trientine, zinc, and now tetrathiomolybdate (TM). Because of its rapid action, potency, and safety, TM is proving to be a very effective drug for initial treatment of acutely ill Wilson's disease patients. Beyond this, TM has antiangiogenic effects, because many proangiogenic cytokines require normal levels of copper. This has led to use of TM in cancer, where it is generally effective in animal tumor models, and has shown efficacy in preliminary clinical studies. Most recently, it has been found that TM has antifibrotic and antiinflammatory effects through inhibition of profibrotic and proinflammatory cytokines. [source]


FGFR1/PI3K/AKT signaling pathway is a novel target for antiangiogenic effects of the cancer drug Fumagillin (TNP-470)

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007
Gregory J. Chen
Abstract Fibroblast growth factor-1 (FGF1), a prototypic member of the FGF family, is a potent angiogenic factor. Although FGF-stimulated angiogenesis has been extensively studied, the molecular mechanisms regulating FGF1-induced angiogenesis are poorly understood in vivo. Fumagillin, an antiangiogenic fungal metabolite, has the ability to inhibit FGF-stimulated angiogenesis in the chicken chorioallantoic membrane (CAM). In the current study, chicken CAMs were transfected with a signal peptide-containing version of the FGF1 gene construct (sp-FGF1). Transfected CAMs were then analyzed in the presence and absence of fumagillin treatment with respect to the mRNA expression levels and protein activity of the FGF1 receptor protein (FGFR1), phosphatidylinositol 3-kinase (PI3K), and its immediate downstream target, AKT-1 (protein kinase B). Treatment of sp-FGF1-transfected CAMs with fumagillin showed downregulation for both PI3K and AKT-1 proteins in mRNA expression and protein activity. In contrast, no major alterations in FGFR1 mRNA expression level were observed. Similar patterns of mRNA expression for the above three proteins were observed when the CAMs were treated with recombinant FGF1 protein in place of sp-FGF1 gene transfection. Investigation using biotin-labeled fumagillin showed that only the FGF1 receptor protein containing the cytoplasmic domain demonstrated binding to fumagillin. Furthermore, we demonstrated endothelial-specificity of the proposed antiangiogenic signaling cascade using an in vitro system. Based on these findings, we conclude that the binding of fumagillin to the cytoplasmic domain of the FGF1 receptor inhibited FGF1-stimulated angiogenesis both in vitro and in vivo. J. Cell. Biochem. 101: 1492,1504, 2007. 2007 Wiley-Liss, Inc. [source]


Biomolecular characterization of human glioblastoma cells in primary cultures: Differentiating and antiangiogenic effects of natural and synthetic PPAR, agonists

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2008
E. Benedetti
Gliomas are the most commonly diagnosed malignant brain primary tumors. Prognosis of patients with high-grade gliomas is poor and scarcely affected by radiotherapy and chemotherapy. Several studies have reported antiproliferative and/or differentiating activities of some lipophylic molecules on glioblastoma cells. Some of these activities in cell signaling are mediated by a class of transcriptional factors referred to as peroxisome proliferator-activated receptors (PPARs). PPAR, has been identified in transformed neural cells of human origin and it has been demonstrated that PPAR, agonists decrease cell proliferation, stimulate apoptosis and induce morphological changes and expression of markers typical of a more differentiated phenotype in glioblastoma and astrocytoma cell lines. These findings arise from studies mainly performed on long-term cultured transformed cell lines. Such experimental models do not exactly reproduce the in vivo environment since long-term culture often results in the accumulation of further molecular alterations in the cells. To be as close as possible to the in vivo condition, in the present work we investigated the effects of PPAR, natural and synthetic ligands on the biomolecular features of primary cultures of human glioblastoma cells derived from surgical specimens. We provide evidence that PPAR, agonists may interfere with glioblastoma growth and malignancy and might be taken in account as novel antitumoral drugs. J. Cell. Physiol. 217: 93,102, 2008. 2008 Wiley-Liss, Inc. [source]


Antitumor and Antiangiogenic Activity of Soy Phytoestrogen on 7,12-Dimethylbenz[,]anthracene-Induced Mammary Tumors Following Ovariectomy in Sprague,Dawley Rats

JOURNAL OF FOOD SCIENCE, Issue 7 2009
Xinmei Kang
ABSTRACT:, Soy phytoestrogen is often used as hormone replacement therapy to alleviate the symptoms of menopause in postmenopausal women. Since estrogen has been considered as an important risk factor for the development of breast carcinoma, we need to know whether it is safe for these postmenopausal women with breast cancer to take soy foods that are rich in phytoestrogen. In the present study, we investigated the efficacy of soy phytoestrogen on tumor proliferation, apoptosis, and angiogenesis in mammary tumors that had already formed in ovariectomized rats. We found that soy phytochemical extraction inhibited proliferation and induced apoptosis,in vitro,and,in vivo, and it demonstrated better antitumor effects than single phytoestrogen. Soy phytochemical extraction also produced surprisingly good antiangiogenic effects, which were evidenced by lower microvascular density, reduced plasma vascular endothelial growth factor, and increased plasma endostatin levels. Our findings suggest that soy phytochemical extraction exerts significant antitumor and antiangiogenic activity in a postmenopausal animal model with breast cancer. [source]


Improved therapeutic responses for liposomal doxorubicin targeted via thrombospondin peptidomimetics versus untargeted doxorubicin

JOURNAL OF PEPTIDE SCIENCE, Issue 7 2010
M. P. Rivera-Fillat
Abstract New therapies in cancer treatment are focusing on multifaceted approaches to starve and kill tumors utilizing both antiangiogenic and chemotherapeutic compounds. In this work, we searched for a peptide vector that would home liposomes both to endothelial and tumor cells. [Abu6]TSPB and [Abu6]TSPA, aspartimide analogs of natural sequences of TSP-1 and TSP-2, respectively, were tested for adhesion of tumor and endothelial cells, in vivo and in vitro antiangiogenic effects, and in vivo antitumor action. Both peptides support the adhesion of both types of cells, but only [Abu6]TSPA inhibits the angiogenesis in vivo, and [Abu6]TSPA-targeted L -DOX decreases by 58% (P < 0.008) the HT29 tumor growth in nude mice. The improvement in the doxorubicin antitumor effect should be attributed to the antiangiogenic effect of [Abu6]TSPA, since [Abu6]TSPB, despite being a good ligand for both cell types, had no effect on tumor growth. Copyright 2010 European Peptide Society and John Wiley & Sons, Ltd. [source]


Synthesis and in-vitro antitumour activity of new naphthyridine derivatives on human pancreatic cancer cells

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2009
Irene Banti
Abstract Objectives The aim of the study was to evaluate the antitumour effect in vitro of newly synthesized 7-substituted 2,3-dihydro-1,8-naphthyridines. Methods Characterization tools included cell viability assay, caspase 3/7 induction, DNA fragmentation, fibroblast growth factor type 1 receptor kinase inhibition, and in-vitro antiangiogenic analysis. Key findings Treatment of MIA PaCa-2 human pancreatic cancer cells with test compounds showed time- and concentration-dependent cytotoxicity with IC50 values in the micromolar range. Compounds with an aminoalkyl or a diaminoalkyl side chain at the 7-position exhibited remarkable cytotoxicity, whereas the presence of a methyl group or a cyclic amine in the same position led to a significant decrease in their biological activity. Cytotoxicity screening demonstrated that the most active was compound 11 (mean 50% inhibition of cell proliferation (IC50) 11 ,M). This compound had an in-vitro antitumour efficacy superior to 5-fluorouracil (the lowest cell viability value after treatment (Emax) 0.2% and 19%, respectively) and proved to be less toxic than 5-fluorouracil against non-cancerous human oral epithelial cells. In addition, compound 11 induced apoptosis in MIA PaCa-2 cells and it was able to promote antiangiogenic effects in vitro. Finally, its cytotoxicity was enhanced in pancreatic cancer cells stimulated with fibroblast growth factor, while no substantial effect was observed on human bronchial smooth muscle cells stimulated with the same growth factor. Conclusions These findings suggest that 1,8-naphthyridine derivatives are a promising class of compounds in cancer research. In particular, the antitumour activity of compound 11 is worth further investigation. [source]


Antitumor activities of synthetic and natural stilbenes through antiangiogenic action

CANCER SCIENCE, Issue 10 2008
Yoshiyuki Kimura
We reported that the antitumor and antimetastatic actions of resveratrol might be due to the inhibition of tumor-induced angiogenesis. To search for anticancer agents with stronger activity than resveratrol, we examined the antiangiogenic effects of 21 synthetic and/or natural stilbenes. Among these 21 stilbenes, 2,3-, 3,4-, and 4,4,-dihydroxystilbene inhibited the pro-matrix metalloproteinase (pro-MMP),9 production in colon 26 cells at 5,25 M, vascular endothelial growth factor (VEGF),induced human umbilical vein endothelial cell (HUVEC) migration at 10 and 25 M, and VEGF-induced angiogenesis at 5,50 M. Resvertarol inhibited the pro-MMP-9 production and VEGF-induced angiogenesis at 25 or 50 M. Thus, the inhibition of pro-MMP-9 production in colon 26 cells and VEGF-induced angiogenesis by three dihydroxystilbenes were greater than those of resveratrol. The three dihydroxystilbenes (8 mg/kg, intraperitoneal injection) inhibited the tumor-induced neovascularization in colon 26,packed chamber-bearing mice and the tumor growth in colon 26,bearing mice. Furthermore, the three dihydroxystilbenes inhibited VEGF-induced VEGFR-2 phosphorylation. On the other hand, the three dihydroxystilbenes had no effect on VEGFR-1 and-2 expression, and VEGF-induced VEGFR-1 phosphorylation in HUVECs. These findings suggest that the inhibition of tumor-induced neovascularization by these three dihydroxystilbenes may be due to the inhibition of VEGF-induced endothelial cell migration and VEGF-induced angiogenesis through the inhibition of VEGF-induced VEGFR-2 phosphorylation in endothelial cells and pro-MMP-9 expression in colon 26 cells. (Cancer Sci 2008; 99: 2083,2096) [source]


Downregulation of Tie2 gene by a novel antitumor sulfolipid, 3,-sulfoquinovosyl-1,-monoacylglycerol, targeting angiogenesis

CANCER SCIENCE, Issue 5 2008
Yoko Mori
We previously reported that 3,-sulfoquinovosyl-1,-monoacylglycerol (SQMG) was effective in suppressing the growth of solid tumors due to hemorrhagic necrosis in vivo. In the present study, we investigated the antiangiogenic effect of SQMG. In vivo assessment of antitumor assays showed that some tumor cell lines, but not others, were sensitive to SQMG. Microscopic study suggested that in SQMG-sensitive tumors, but not SQMG-resistant tumors, angiogenesis was reduced. We next investigated gene expression relating to angiogenesis in tumor tissues by quantitative real-time polymerase chain reaction. Consequently, although vascular endothelial growth factor gene expression was not detected with significant differences among the cases, significant downregulation of Tie2 gene expression was observed in all SQMG-sensitive tumors as compared with controls, but not in SQMG-resistant tumors. These data suggested that the antitumor effects of SQMG could be attributed to antiangiogenic effects, possibly via the downregulation of Tie2 gene expression in SQMG-sensitive tumors. (Cancer Sci 2008; 99: 1063,1070) [source]


Adiponectin inhibits the growth and peritoneal metastasis of gastric cancer through its specific membrane receptors AdipoR1 and AdipoR2

CANCER SCIENCE, Issue 7 2007
Makoto Ishikawa
Adiponectin, a circulating peptide hormone produced in adipose tissue, has been shown to be reduced in the plasma of patients with cancer, suggesting that this adipokine may be mechanically involved in the pathogenesis of adiposity-related carcinogenesis. In this study, we examined the expression of adiponectin receptors (AdipoR1 and AdipoR2) and assessed the function of adiponectin in gastric cancer. All of the six gastric cancer cell lines significantly expressed mRNA and protein of both receptors with variable levels. Addition of 30 g/mL adiponectin potently induced apoptosis and inhibited the proliferation of AZ521 and HCG27. Down-regulation of either AdipoR1 or AdipoR2 by specific siRNA significantly suppressed the growth inhibitory effects of adiponectin in both cell lines. Moreover, a local injection of adiponectin markedly inhibited the growth of AZ521 inoculated subcutaneously in nude mice. Similarly, the continuous intraperitoneal infusion of adiponectin effectively suppressed the development of peritoneal metastasis of AZ521. Adiponectin negatively regulates the progression of gastric cancer cells possibly through both AdipoR1 and AdipoR2. Although adiponectin was already reported to have antiangiogenic effects, our results suggest that the antitumor effect of adiponectin was, at least partially, dependent on the direct effects on tumor cells. (Cancer Sci 2007; 98: 1120,1127) [source]