Antiangiogenic Agents (antiangiogenic + agent)

Distribution by Scientific Domains

Selected Abstracts

Triptolide functions as a potent angiogenesis inhibitor

Ming-Fang He
Abstract Triptolide is a key anti-inflammatory compound of the Chinese herbal medicine Tripterygium wilfordii Hook. f. (Celastraceae). It also possesses potent antitumor activity. In this study, we show that triptolide is an angiogenesis inhibitor based on various angiogenesis assays. The IC50 in in vitro assays was 45 nM, which was much lower than the plasma concentrations of triptolide in the rat or human administered with T. wilfordii extracts for treating inflammation. When dosed in vivo, triptolide potently inhibited angiogenesis at 100 nM in Matrigel plug assay. Triptolide at 0.75 mg/kg/day significantly blocked tumor angiogenesis and tumor progression in murine tumorigenesis assay. The underlying mechanism of triptolide correlated with downregulation of proangiogenic Tie2 and VEGFR-2 expression in human umbilical vein endothelial cell by semiquantitative RT-PCR and western blot analysis. Although Tie2 inhibition appeared to be a later event as compared with VEGFR-2, Tie2 overexpression significantly attenuated the inhibitory effect of triptolide on endothelial proliferation and network formation. By contrast, Tie2 knockdown mimicked the inhibitory effect of triptolide on endothelial network formation. Our findings suggest that antitumor action of triptolide is partly via inhibition of tumor angiogenesis by blocking 2 endothelial receptor-mediated signaling pathways, and triptolide can be a promising antiangiogenic agent. [source]

Metabolism of a novel antiangiogenic agent KR-31831 in rats using liquid chromatography-electrospray mass spectrometry

Hui-Hyun Kim
Abstract KR-31831 ((2S,3R,4S)-4-(((1H-imidazol-2-yl)methyl)(4-chlorophenyl)amino)-6-amino-2-(dimethoxymethyl)-2-methyl-3,4-dihydro-2H-chromen-3-ol) is a novel antiangiogenic agent. In vitro and in vivo metabolism of KR-31831 in rats has been investigated using LC-MS and LC-MS/MS analysis. Incubation of rat liver microsomes and hepatocytes with KR-31831 produced three metabolites (M1,M3). M1, M2, and M3 were identified as N -((1H-imidazol-2-yl)methyl)-4-chlorobenzenamine, (2R,3R,4S)-4-(((1H-imidazol-2-yl)methyl)(4-chlorophenyl) amino)-6-amino-2-(hydroxymethyl)-2-methyl-3,4-dihydro-2H-chromen-3-ol, and N -((2S,3R,4S)-4-(((1H-imidazol-2-yl)methyl)(4-chlorophenyl)amino)-2-(dimethoxymethyl)-3-hydroxy-2-methyl-3,4-dihydro-2H-chromen-6-yl)acetamide, respectively, by co-chromatography with the authentic standards and by comparison with product ion spectra of the authentic standards. Those in vitro metabolites were also detected in bile, plasma, or urine samples after an intravenous administration of KR-31831 to rats. The metabolic routes for KR-31381 included the metabolism of acetal group to hydroxymethyl group (M2), N -dealkylation to M1, and N -acetylation at the 6-amino group (M3). [source]

Growth inhibition of orthotopic anaplastic thyroid carcinoma xenografts in nude mice by PTK787/ZK222584 and CPT-11

Seungwon Kim MD
Abstract Background. A preclinical evaluation of CPT-1 (Camptosar, irinotecan) and PTK787/ZK222584, a vascular endothelial growth factor receptor (VEGFR-2) tyrosine kinase inhibitor, as therapeutic agents against anaplastic thyroid carcinoma (ATC) was performed in vitro and in an orthotopic model of ATC in nude mice. Methods. The cytotoxic and cytostatic effects of CPT-11 on ATC cell lines were evaluated. The antitumor effects of CPT-11 in combination with PTK787/ZK222584 on orthotopic ATC xenografts in nude mice were also studied. Results. CPT-11 demonstrated significant antiproliferative effects on ATC cell lines. In vivo, PTK787/ZK222584, CPT-11, and the two agents together produced 61%, 82%, and 89% decrease in tumor growth, respectively. The differences in tumor volume between CPT-11 and CPT-11 + PTK787/ZK222584 groups were not statistically significant. PTK787/ZK222584 inhibited the phosphorylation of VEGFR-2 on tumor endothelium and decrease the tumor microvessel density. Conclusions. The camptothecin class of chemotherapeutic agents and antiangiogenic agents such as PTK787/ZK222584 warrant further study as novel therapeutic agents against ATC. © 2005 Wiley Periodicals, Inc. Head Neck27: 389,399, 2006 [source]

Challenges of antiangiogenic cancer therapy: trials and errors, and renewed hope

Miguel Ángel Medina
,,Introduction ,,What can we learn from the previous failures? ,,Signs of hope ,,Another turn of the screw: a surrogate marker, at last ,,Future avenues for the vascular therapy of cancer Abstract Angiogenesis inhibition has been proposed as a general strategy to fight cancer. However, in spite of the promising preclinical results, a first generation of antiangiogenic compounds yielded poor results in clinical trials. Conceptual errors and mistakes in the design of trials and in the definition of clinical end-points could account for these negative results. In this context of discouraging results, a second generation of antiangiogenic therapies is showing positive results in phases II and III trials at the beginning of the twenty-first century. In fact, several combined treatments with conventional chemotherapy and antiangiogenic compounds have been recently approved. The discovery and pharmacological development of future generations of angiogenesis inhibitors will benefit from further advances in the understanding of the mechanisms involved in human angiogenesis. New styles of trials are necessary, to avoid missing potential therapeutic effects. Different clinical end-points, new surrogate biomarkers and methods of imaging will be helpful in this process. Real efficacy in clinical trials may come with the combined use of antiangiogenic agents with conventional chemotherapy or radiotherapy, and combinations of several antiangiogenic compounds with different mechanisms of action. Finally, the existing antiangiogenic strategies should include other approaches such as vascular targeting or angioprevention. [source]

Antiangiogenic drugs: Current knowledge and new approaches to cancer therapy

Jose L. Mauriz
Abstract Angiogenesis,process of new blood-vessel growth from existing vasculature,is an integral part of both normal developmental processes and numerous pathologies such as cancer, ischemic diseases and chronic inflammation. Angiogenesis plays a crucial role facilitating tumour growth and the metastatic process, and it is the result of a dynamic balance between proangiogenic and antiangiogenic factors. The potential to block tumour growth and metastases by angiogenesis inhibition represents an intriguing approach to the cancer treatment. Angiogenesis continues to be a topic of major scientific interest; and there are currently more antiangiogenic drugs in cancer clinical trials than those that fit into any other mechanistic category. Based on preclinical studies, researchers believe that targeting the blood vessels which support tumour growth could help treatment of a broad range of cancers. Angiogenic factors or their receptors, endothelial cell proliferation, matrix metalloproteinases or endothelial cell adhesion, are the main targets of an increasing number of clinical trials approved to test the tolerance and therapeutic efficacy of antiangiogenic agents. Unfortunately, contrary to initial expectations, it has been described that antiangiogenic treatment can cause different toxicities in cancer patients. The purpose of this article is to provide an overview of current attempts to inhibit tumour angiogenesis for cancer therapy. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:4129,4154, 2008 [source]

Non surgical approach in diabetic macular edema : the future ?

Purpose To present the different non surgical therapeutical options of diabetic macular edema Methods The pathogenesis of diabetic macular edema is multifactorial. Hyperglycemia and poor systemic factor balance are major risk factors. Laser treatemnts and antiagiogenic treatments represent the main non surgical options to treat macular edema. Results Focal macular edema remains the best indication of laser treatment. Laser remains also the standard of care of diffuse macular edema but some edemas remain resistant. Several therapeutic options have been proposed : Steroid intravitreal injection and antiVEGF therapy (either PKC inhibitors, VEGF aptamers or VEGF antibodies) represent the future alternative treatments as well as their potential combination. Conclusion Laser remains the main treatment of diabetic macular edema. However, steroids and antiangiogenic agents either isolated or combined represent the main alternative treatment for non responding diffuse macular edema. [source]