Home About us Contact | |||
Antagonist Mifepristone (antagonist + mifepristone)
Selected AbstractsEffect of Chronic Stress and Mifepristone Treatment on Voltage-Dependent Ca2+ Currents in Rat Hippocampal Dentate GyrusJOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2006N. G. Van Gemert Chronic unpredictable stress affects many properties in rat brain. In the dentate gyrus, among other things, increased mRNA expression of the Ca2+ channel ,1C subunit has been found after 21 days of unpredictable stress in combination with acute corticosterone application (100 nM). In the present study, we examined: (i) whether these changes in expression are accompanied by altered Ca2+ currents in rat dentate granule cells recorded on day 22 and (ii) whether treatment with the glucocorticoid receptor antagonist mifepristone during the last 4 days of the stress protocol normalises the putative stress-induced effects. Three weeks of unpredictable stress did not affect Ca2+ current amplitude in dentate granule cells under basal conditions (i.e. after incubation with vehicle solution). However, the sustained Ca2+ current component (which largely depends on the ,1C subunit) was significantly increased in amplitude after chronic stress when slices had been treated with corticosterone 1,4 h before recording. These findings suggest that dentate granule cells are exposed to an increased calcium load after exposure to an acute stressor when they have a history of chronic stress, potentially leading to increased vulnerability of the cells. The present results are in line with the molecular data on Ca2+ channel ,1C subunit expression. A significant three-way interaction between chronic stress, corticosterone application and mifepristone treatment was found, indicating that the combined effect of stress and corticosterone depends on mifepristone cotreatment. Interestingly, current density (defined as total current divided by capacitance) did not differ between the groups. This indicates that the observed changes in Ca2+ current amplitude could be attributable to changes in cell size. [source] Sialylation enhancement of CTLA4-Ig fusion protein in Chinese hamster ovary cells by dexamethasoneBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2010Ying Jing Abstract The importance of glycoprotein sialic acid levels is well known, as increased levels have been shown to increase in vivo serum half-life profiles. Here we demonstrate for the first time that dexamethasone (DEX) was capable of improving the sialylation of a CTLA4-Ig fusion protein produced by Chinese hamster ovary (CHO) cells. DEX was shown to enhance the intracellular addition of sialic acid by sialyltransferases as well as reduce extracellular removal of sialic acid by sialidase cleavage. We illustrated that DEX addition resulted in increased expression of the glycosyltransferases ,2,3-sialyltransferase (,2,3-ST) and ,1,4-galactosyltransferase (,1,4-GT) in CHO cells. Based upon our previous results showing DEX addition increased culture cell viability, we confirmed here that cultures treated with DEX also resulted in decreased sialidase activity. Addition of the glucocorticoid receptor (GR) antagonist mifepristone (RU-486) was capable of blocking the increase in sialylation by DEX which further supports that DEX affected sialylation as well as provides evidence that the sialylation enhancement effects of DEX on recombinant CHO cells occurred through the GR. Finally, the effects of DEX on increasing sialylation were then confirmed in 5-L controlled bioreactors. Addition of 1,µM DEX to the bioreactors on day 2 resulted in harvests with average increases of 16.2% for total sialic acid content and 15.8% in the protein fraction with N-linked sialylation. DEX was found to be a simple and effective method for increasing sialylation of this CTLA4-Ig fusion protein expressed in CHO cells. Biotechnol. Bioeng. 2010;107: 488,496. © 2010 Wiley Periodicals, Inc. [source] Modulation of cytokine production by dydrogesterone in lymphocytes from women with recurrent miscarriageBJOG : AN INTERNATIONAL JOURNAL OF OBSTETRICS & GYNAECOLOGY, Issue 8 2005Raj Raghupathy Objective To examine the effects of dydrogesterone on the production of Th1 and Th2 cytokines by lymphocytes from women undergoing unexplained recurrent spontaneous miscarriage (RSM). Design Controlled prospective, clinical study conducted in a maternity hospital and a university-based immunology laboratory. Setting Faculty of Medicine, Kuwait University and Kuwait Maternity Hospital. Sample Thirty women with unexplained RSM. Methods Peripheral blood mononuclear cells (PBMC) from women with unexplained RSM were isolated from venous blood by density gradient sedimentation and stimulated with phytohaemagglutinin (PHA). Culture supernatants assayed for interferon (IFN)-,, tumour necrosis factor (TNF)-,, interleukin (IL)-4, IL-6 and IL-10 by ELISA. Levels of the progesterone-induced blocking factor (PIBF) were also measured. Main outcome measures Cytokine production in the presence and absence of progesterone and dydrogesterone. Results Dydrogesterone significantly inhibited the production of the Th1 cytokines IFN-, (P= 0.0001) and TNF-, (P= 0.005) and induced an increase in the levels of the Th2 cytokines IL-4 (P= 0.03) and IL-6 (P= 0.017) resulting in a substantial shift in the ratio of Th1/Th2 cytokines. The effect of dydrogesterone was blocked by the addition of the progesterone-receptor antagonist mifepristone, indicating that dydrogesterone was acting via the progesterone receptor. Dydrogesterone induced the production of PIBF. Conclusion Dydrogesterone inhibits the production of the Th1 cytokines IFN-, and TNF-, from lymphocytes and up-regulates the production of the Th2 cytokines IL-4 and IL-6, inducing a Th1 to Th2 cytokine shift. [source] Abnormalities of the HPA axis in affective disorders: clinical subtypes and potential treatmentsACTA NEUROPSYCHIATRICA, Issue 5 2006Richard J. Porter Background:, New evidence is emerging regarding abnormalities of hypothalamic-pituitary-adrenal (HPA) axis function in subtypes of affective disorders. Adverse effects of HPA axis dysregulation may include dysfunction of monoaminergic transmitter systems, cognitive impairment and peripheral effects. Newer treatments specifically targeting the HPA axis are being developed. Objective:, To review these developments focusing particularly on the glucocorticoid receptor (GR) antagonist mifepristone. Method:, A selective review of the literature. Results:, The function of GRs is increasingly being defined. The role of corticotrophin-releasing hormone (CRH) and dehydroepiandrosterone (DHEA) in the brain is also increasingly understood. HPA axis function is particularly likely to be abnormal in psychotic depression and bipolar disorder, and it is in these conditions that trials of the GR antagonist mifepristone are being focused. CRH antagonists and DHEA are also being investigated as potential treatments. Conclusion:, Initial studies of mifepristone and other HPA-axis-targeting agents in psychotic depression and bipolar disorder are encouraging and confirmatory studies are awaited. [source] |