Antagonist Bicuculline (antagonist + bicuculline)

Distribution by Scientific Domains

Kinds of Antagonist Bicuculline

  • gabaa receptor antagonist bicuculline
  • receptor antagonist bicuculline


  • Selected Abstracts


    GABAergic modulation of primary gustatory afferent synaptic efficacy

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2002
    Andrew A. Sharp
    Abstract Modulation of synaptic transmission at the primary sensory afferent synapse is well documented for the somatosensory and olfactory systems. The present study was undertaken to test whether GABA impacts on transmission of gustatory information at the primary afferent synapse. In goldfish, the vagal gustatory input terminates in a laminated structure, the vagal lobes, whose sensory layers are homologous to the mammalian nucleus of the solitary tract. We relied on immunoreactivity for the GABA-transporter, GAT-1, to determine the distribution of GABAergic synapses in the vagal lobe. Immunocytochemistry showed dense, punctate GAT-1 immunoreactivity coincident with the layers of termination of primary afferent fibers. The laminar nature and polarized dendritic structure of the vagal lobe make it amenable to an in vitro slice preparation to study early synaptic events in the transmission of gustatory input. Electrical stimulation of the gustatory nerves in vitro produces synaptic field potentials (fEPSPs) predominantly mediated by ionotropic glutamate receptors. Bath application of either the GABAA receptor agonist muscimol or the GABAB receptor agonist baclofen caused a nearly complete suppression of the primary fEPSP. Coapplication of the appropriate GABAA or GABAB receptor antagonist bicuculline or CGP-55845 significantly reversed the effects of the agonists. These data indicate that GABAergic terminals situated in proximity to primary gustatory afferent terminals can modulate primary afferent input via both GABAA and GABAB receptors. The mechanism of action of GABAB receptors suggests a presynaptic locus of action for that receptor. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 133,143, 2002 [source]


    Inhibition of superior colliculus neurons by a GABAergic input from the pretectal nuclear complex in the rat

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2004
    Gesche Born
    Abstract The mammalian pretectal nuclear complex (PNC) is a visual and visuomotor control structure which is strongly connected to other subcortical visual structures. This indicates that the PNC also controls subcortical visual information flow during the execution of various oculomotor programs. A prominent, presumably GABAergic, projection from the PNC targets the superficial grey layer of the superior colliculus (SC), which itself is a central structure for visual information processing necessary for the generation of saccadic eye movements. In order to characterize the pretecto-tectal projection in vitro, we performed whole-cell patch-clamp recordings from SC and PNC neurons in slices obtained from 3,6-week-old pigmented rats. Focal glutamate injections into the PNC and electrical PNC stimulation were used to induce postsynaptic responses in SC neurons. Electrical stimulation of the SC allowed electrophysiological identification of PNC neurons that provide the inhibitory pretecto-tectal input. Only inhibitory postsynaptic currents could be elicited in SC neurons both by pharmacological and by electrical activation of the ipsilateral PNC. Concomitantly, a small number of PNC neurons could be antidromically activated from the ipsilateral SC. Most SC cells postsynaptic to the prectectal input showed the dendritic morphology of wide-field and narrow-field cells and are therefore regarded as projection neurons. All inhibitory currents evoked by PNC activation could be completely blocked by bath application of the selective GABAA receptor antagonist bicuculline. Together these results indicate that SC projection neurons receive a direct inhibitory input from the ipsilateral PNC and that this input is mediated by GABAA receptors. [source]


    Presynaptic source of quantal size variability at GABAergic synapses in rat hippocampal neurons in culture

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2004
    Andrea Barberis
    Abstract The variability of quantal size depends on both presynaptic (profile of the neurotransmitter concentration in the cleft) and postsynaptic (number and gating properties of postsynaptic receptors) factors. Here we have examined the possibility that at nonsaturated synapses in cultured hippocampal neurons, changes in both the transmitter concentration peak and its clearance from the synaptic cleft may influence the variability of spontaneous miniature synaptic GABAergic currents (mIPSCs). We found that, in contrast to the slow-off GABAA receptor antagonist bicuculline, fast-off competitive antagonists such as SR-95103 and TPMPA differentially blocked small and large mIPSCs. In the presence of flurazepam, a drug believed to increase the affinity of GABA for GABAAR, small mIPSCs were enhanced more efficiently than large events. Moreover, the addition of dextran, which increases the viscosity of the extracellular fluid, preferentially increased small mIPSCs with respect to large ones. These observations suggest that changes in the concentration peak and the speed of GABA clearance in the cleft may be an important source of synaptic variability. The study of the correlation between peak amplitude and kinetics of mIPSCs allowed determination of the relative contribution of transmitter peak concentration vs. time of GABA clearance. Small synaptic responses were associated with fast onset and decay kinetics while large amplitude currents were asociated with slow kinetics, indicating a crucial role for GABA synaptic clearance in variability of mIPSCs. By using model simulations we were able to estimate the range of variability of both the concentration and the speed of clearance of the GABA transient in the synaptic cleft. [source]


    GABA selectively controls the secretory activity of oxytocin neurons in the rat supraoptic nucleus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2004
    Mario Engelmann
    Abstract Recently we reported that a single social defeat experience triggers the release of oxytocin (OXT) from somata and dendrites, but not axon terminals, of neurons of the hypothalamic,neurohypophysial system. To further investigate the regulatory mechanisms underlying this dissociated release, we exposed male Wistar rats to a 30-min social defeat and monitored release of the inhibitory amino acids gamma amino butyric acid (GABA) and taurine within the hypothalamic supraoptic nucleus (SON) using microdialysis. Social defeat caused a significant increase in the release of both GABA and taurine within the SON (up to 480%; P < 0.01 vs. prestress release). To reveal the physiological significance of centrally released GABA, the specific GABAA -receptor antagonist bicuculline (0.02 mm) was administered into the SON via retrodialysis. This approach caused a significant increase in the release of OXT both within the SON and into the blood under basal conditions and during stress (up to 300 and 200%, respectively; P < 0.05 vs. basal values), without affecting plasma vasopressin. Electrophysiological studies confirmed the selective action of bicuculline on the firing activity of OXT neurons in the SON. Taken together, our data demonstrate that GABA is released within the SON during emotional stress to act as a selective inhibitor of both central and peripheral OXT secretion. [source]


    Cortical inhibitory circuits in eye-movement generation

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003
    Peter H. Schiller
    Abstract The role inhibitory circuits play in target selection with saccadic eye movements was examined in area V1, the frontal eye fields (FEF) and the lateral intraparietal sulcus (LIP) of the Rhesus Macaque monkey by making local infusions of the GABA agonist muscimol and antagonist bicuculline. In V1, both agents greatly interfered with target selection and visual discrimination of stimuli placed into the receptive field of the affected neurons. In the FEF, bicuculline facilitated target selection without affecting visual discrimination and generated many spontaneous saccades. Muscimol in the FEF interfered with saccadic eye-movement generation. In the LIP, bicuculline was ineffective and muscimol had only a small effect. These findings suggest that in the FEF GABAergic inhibitory circuits play a central role in eye-movement generation whereas in V1 these circuits are essential for visual analysis. Inhibitory circuits in the LIP do not appear to play a central role in target selection and in visual discrimination. [source]


    Taurine selectively modulates the secretory activity of vasopressin neurons in conscious rats

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2001
    Mario Engelmann
    Abstract Previous experiments have shown that a 10-min forced swimming session triggers the release of vasopressin from somata and dendrites, but not axon terminals, of neurons of the hypothalamic,neurohypophysial system. To further investigate regulatory mechanisms underlying this dissociated release, we forced male Wistar rats to swim in warm (20 °C) water and monitored release of the potentially inhibitory amino acids gamma amino butyric acid (GABA) and taurine into the hypothalamic supraoptic nucleus using microdialysis. Forced swimming caused a significant increase in the release of taurine (up to 350%; P < 0.05 vs. prestress release), but not GABA. To reveal the physiological significance of centrally released taurine, the specific taurine antagonist 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide was administered into the supraoptic nucleus via retrodialysis. Administration of this antagonist caused a significant increase in the release of vasopressin within the supraoptic nucleus and into the blood both under basal conditions and during stress (up to 800%; P < 0.05 vs. basal values), without affecting hypothalamic or plasma oxytocin. Local administration of the GABAA receptor antagonist bicuculline, in contrast, failed to influence vasopressin secretion at either time point. In a separate series of in vivo electrophysiological experiments, administration of the same dosage of the taurine antagonist into the supraoptic nucleus via microdialysis resulted in an increased electrical activity of identified vasopressinergic, but not oxytocinergic, neurons. Taken together our data demonstrate that taurine is released within the supraoptic nucleus during physical/emotional stress. Furthermore, at the level of the supraoptic nucleus, taurine inhibits not only the electrical activity of vasopressin neurons but also acts as an inhibitor of both central and peripheral vasopressin secretion during different physiological states. [source]


    The serotonin 5-HT2 receptor,phospholipase C system inhibits the induction of long-term potentiation in the rat visual cortex

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2000
    Yoshikuni Edagawa
    Abstract The effect of serotonin 5-HT2 receptor stimulation on long-term potentiation (LTP) in the primary visual cortex was investigated by using rat brain slices in vitro. Field potentials evoked by stimulation of layer IV were recorded in layer II/III. The 5-HT2 receptor agonist 1-(2,5-dimethyl-4-iodophenyl)-2-aminopropane (DOI) did not affect baseline synaptic potentials evoked by single-pulse test stimulation, but significantly inhibited the induction of LTP in a concentration-dependent manner (0.1,10 ,m). The LTP-inhibiting effect of DOI (10 ,m) was blocked by the 5-HT2,7 receptor antagonist ritanserin (10 ,m), but not by the 5-HT1A receptor antagonist NAN-190 (10 ,m) nor by the 5-HT3,4 receptor antagonist MDL72222 (10 ,m). The inhibitory effect of DOI was also blocked by the phospholipase C inhibitor U73122, but not by its inactive analogue U73343. These results suggest that visual cortex LTP is inhibited by activation of the 5-HT2 receptor,phospholipase C system. In addition, the LTP-inhibiting effect of DOI was abolished by the presence of the GABAA receptor antagonist bicuculline (10 ,m), suggesting that 5-HT2 receptor-mediated inhibition of visual cortex LTP is dependent on GABAergic inhibition. [source]


    Coregulation of Ethanol Discrimination by the Nucleus Accumbens and Amygdala

    ALCOHOLISM, Issue 3 2003
    Joyce Besheer
    Background: Activation of GABAA receptors in the amygdala or nucleus accumbens produces discriminative stimulus effects that substitute fully for those of systemically administered ethanol. This study was conducted to determine if GABAA receptors in the amygdala and nucleus accumbens interactively modulate ethanol discrimination. Methods: Male Long-Evans rats were trained to discriminate between intraperitoneal injections of ethanol (1 g/kg) and saline on a 2-lever drug discrimination task. The rats were then surgically implanted with bilateral injection cannulae aimed at the nucleus accumbens and the amygdala. Results: Infusion of the GABAA agonist muscimol in the nucleus accumbens resulted in full substitution for systemically administered ethanol. Concurrent infusion of the GABAA antagonist bicuculline in the amygdala shifted the muscimol substitution curve in the nucleus accumbens 10-fold to the right. Conclusions: These results indicate that blockade of GABAA receptors in the amygdala significantly reduces the potency of the GABAA agonist in the nucleus accumbens. This suggests that the ethanol-like stimulus effects of GABAA receptor activation in the nucleus accumbens are modulated by GABAA receptor activity in the amygdala. These data support the hypothesis that the addictive stimulus properties of alcohol are mediated by GABAergic transmission in a neural circuit involving the amygdala and nucleus accumbens. [source]


    GABAmimetic intravenous anaesthetics inhibit spontaneous Ca2+ -oscillations in cultured hippocampal neurons

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 6 2006
    B. Sinner
    Background:, Spontaneous Ca2+ -oscillations are a possible mechanism of Ca2+ -mediated signal transduction in neurons. They develop by a periodical interplay of Ca2+, which enters the neuron from the extracellular medium and triggers Ca2+ release from the endoplasmic reticulum (ER). Ca2+ -oscillations are terminated by reuptake into the ER or plasmalemmal extrusion. Spontaneous Ca2+ -oscillations are glutamate dependent and appear to be responsible for neuronal plasticity and integration of information. Here, we examined the role of the gamma-aminobutyric acid (GABAA) receptor on spontaneous Ca2+ -oscillations and studied the effects of the anaesthetics midazolam, thiopental and the non-anesthetic barbituric acid on spontaneous Ca2+ -oscillations. Methods:, Hippocampal neuronal cell cultures of 19-day-old embryonic Wistar rats 17,18 days in culture were loaded with the Ca2+ -sensitive dye Fura-2AM. Experiments were performed using dual wave-length excitation fluorescence microscopy and calibration constants were obtained from in situ calibration. Results:, Spontaneous Ca2+ -oscillations are influenced by the GABAA receptor. The intravenous anaesthetics midazolam and thiopental suppressed the amplitude and frequency reversibly in a dose-dependent manner with EC50 in clinically relevant concentrations. This effect was mediated via the GABAA receptor as it could be reversed by the GABAA receptor antagonist bicuculline. In contrast, the application of barbituric acid had no effects on the spontaneous Ca2+ -oscillations. Conclusion:, Spontaneous Ca2+ -oscillations are influenced by the GABAA receptor. Spontaneous Ca2+ -oscillations might represent an interesting model system to study anaesthetic mechanisms on neuronal information processing. [source]


    Bicuculline-induced brain activation in mice detected by functional magnetic resonance imaging

    MAGNETIC RESONANCE IN MEDICINE, Issue 2 2001
    Thomas Mueggler
    Abstract Dynamic measurements of local changes in relative cerebral blood volume (CBVrel) during a pharmacological stimulation paradigm were performed in mice. Using magnetite nanoparticles as an intravascular contrast agent, high-resolution CBVrel maps were obtained. Intravenous administration of the GABAA antagonist bicuculline prompted increases in local CBVrel as assessed by MRI with a high spatial resolution of 0.2 × 0.2 mm2 and a temporal resolution of 21 s. Signal changes occurred 20,30 s after the onset of drug infusion in the somatosensory and motor cortex, followed by other cortical and subcortical structures. The magnitudes of the CBVrel increases were 18% ± 4%, 46% ± 14%, and 67% ± 7%, as compared to prestimulation values for the cortex, and 9% ± 3%, 25% ± 4%, and 36% ± 7% for the caudate putamen for bicuculline doses of 0.6, 1.25, and 1.5 mg/kg, respectively. On-line monitoring of transcutaneous carbon dioxide tension PtcCO2 reflecting arterial PaCO2 did not show any alteration during the stimulation paradigm. One of five of the mice receiving the highest bicuculline dose, and three of seven receiving the intermediate dose displayed a different cortical response pattern. After a CBVrel increase of 40% lasting for approximately 1 min, significant CBVrelreductions by 80% have been observed. Subcortical structures did not display this behavior. The present study suggests that this noninvasive approach of functional MRI (fMRI) can be applied to study drug-induced brain activation by central nervous system (CNS) drugs in mice under normal and pathological situations. Magn Reson Med 46:292,298, 2001. © 2001 Wiley-Liss, Inc. [source]


    Downregulation of tonic GABA currents following epileptogenic stimulation of rat hippocampal cultures

    THE JOURNAL OF PHYSIOLOGY, Issue 2 2006
    Jin-shun Qi
    Deficits in GABAergic inhibitory transmission are a hallmark of temporal lobe epilepsy and have been replicated in animal and tissue culture models of epilepsy. GABAergic inhibition comprises phasic and tonic inhibition that is mediated by synaptic and extrasynaptic GABAA receptors, respectively. We have recently demonstrated that chronic stimulation with cyclothiazide (CTZ) or kainic acid (KA) induces robust epileptiform activity in hippocampal neurons both in vitro and in vivo. Here, we report a downregulation of tonic GABA inhibition after chronic epileptogenic stimulation of rat hippocampal cultures. Chronic pretreatment of hippocampal neurons with CTZ or KA resulted in a marked reduction in GABAergic inhibition, as shown by a significant decrease in whole-cell GABA currents and in the frequency of miniature inhibitory postsynaptic currents (mIPSCs). Interestingly, synaptically localized GABAA receptors remained relatively stable, as evidenced by the unaltered amplitude of mIPSCs, as well as the unchanged punctate immunoreactivity of ,2 subunit-containing postsynaptic GABAA receptors. In contrast, tonic GABA currents, assessed either by a GABAA receptor antagonist bicuculline or a selective extrasynaptic GABAA receptor agonist THIP, were significantly reduced following epileptogenic stimulation. These results reveal a novel form of neural plasticity, that epileptogenic stimulation can selectively downregulate extrasynaptic GABAA receptors while leaving synaptic GABAA receptors unchanged. Thus, in addition to synaptic alteration of GABAergic transmission, regulation of tonic inhibition may also play an important role during epileptogenesis. [source]


    A postnatal switch in GABAergic control of spinal cutaneous reflexes

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006
    Gareth Hathway
    Abstract GABAergic signalling exerts powerful inhibitory control over spinal tactile and nociceptive processing, but during development GABA can be depolarizing and the functional consequences of this upon neonatal pain processing is unknown. Here we show a postnatal switch in tonic GABAA receptor (GABAAR) modulation of cutaneous tactile and nociceptive reflexes from excitation to inhibition, but only in the intact spinal cord. Neonatal and 21-day-old (P21) rats were intrathecally treated with one of the GABAAR antagonists bicuculline and gabazine, with both compounds dose-dependently decreasing hindpaw mechanical and thermal withdrawal thresholds in P21 rats but increasing them in P3 neonates. Intrathecal gabazine also produced an increase in the cutaneous evoked electromyography (EMG) response of the biceps femoris in P21 rates but lowering the response in neonates. Injections of 3H-gabazine in the L4,L5 region at P3 confirmed that gabazine binding was restricted to the lumbar spinal cord. Spinalization of P3 neonates at the upper thoracic level prior to drug application reversed the behavioural and EMG responses to GABA antagonists so that they resembled those of P21 rats. The effects of spinalization were consistent with gabazine facilitation of ventral root potentials observed in isolated neonatal spinal cord. These data show a marked postnatal developmental switch in GABAergic control of neonatal nociception that is mediated by supraspinal structures and illustrate the importance of studying developmental circuits in the intact nervous system. [source]