Left Ventricular Remodeling (leave + ventricular_remodeling)

Distribution by Scientific Domains


Selected Abstracts


The Effect of Erythropoietin on Exercise Capacity, Left Ventricular Remodeling, Pressure-Volume Relationships, and Quality of Life in Older Patients With Anemia and Heart Failure With Preserved Ejection Fraction

CONGESTIVE HEART FAILURE, Issue 3 2010
Rose S. Cohen MD
A prospective, open-label, 3-month study was conducted to evaluate the feasibility and short-term clinical effect of subcutaneous erythropoietin injections in patients with anemia and heart failure with preserved ejection fraction (ejection fraction, 55%±2%). Using a dose-adjusted algorithm to effect a rate of rise in hemoglobin not to exceed 0.4 g/dL,/wk, hemoglobin (10.8±0.3 to 12.2±0.3 g/dL) and red blood cell volume (1187±55 to 1333±38 mL) increased with an average weekly dose of 3926 units. Functional measures increased from baseline (6-minute walk test [289±24 to 331±22 m], exercise time [432±62 to 571±51 s], and peak oxygen consumption [8.2±0.7 to 9.4±0.9 mL/kg/min], all P<.05). End-diastolic volume declined significantly (8% volumetric decrease, 108±3 to 100±3 mL, P =.03), but there were no significant changes in left ventricular mass or estimated left ventricular end-diastolic pressure. Pressure-volume analysis demonstrated a reduction in ventricular capacitance at an end-diastolic pressure of 30 mm Hg without significant changes in contractile state. Congest Heart Fail. 2010;16:96,103. © 2009 Wiley Periodicals, Inc. [source]


Right Ventricular Adaptations Along with Left Ventricular Remodeling in Older Athletes

ECHOCARDIOGRAPHY, Issue 3 2009
Oner Ozdogan M.D.
Background: Afterload changes and anatomic interaction between the ventricles cause right ventricle (RV) adaptation along with left ventricle (LV) remodeling. This study was designed to evaluate RV adaptations along with LV remodeling and to determine the effect of aging on both ventricles in a population of older athletes. Methods: Echocardiographic characteristics of 48 endurance trained older athletes were examined by tissue Doppler imaging (TDI) and integrated backscatter (IBS). Results: Mean LV mass index was calculated as 107.8±17.0 g/m2. Twenty-two athletes were > 55 years old. Age was found to be a risk factor for diastolic dysfunction regarding lateral TDI velocities (Em < Am) (r = 0.385, P < 0.001). RV long-axis (LAX) diameters were associated with LA volumes and LV masses (r = 0.380, P < 0.01 and r = 0.307, P < 0.05). RV LAX diameters were correlated with RV TDI E-wave (r =,0.285, P < 0.05), RV LAX average, and peak IBS values (r = 0.36, P < 0.05 and r = 0.348, P < 0.05). Conclusions: TDI and IBS are applicable methods to evaluate the relationship between the two ventricles in athletes' heart. Increased RV LAX IBS values indicate increased LV mass and LA volume as a result of RV changes along with LV remodeling. Our data suggest that RV TDI E-wave and average RV IBS values reflect cardiac adaptations of both RV and LV in older athletes. [source]


An Echocardiographic Analysis of the Long-Term Effects of Carvedilol on Left Ventricular Remodeling, Systolic Performance, and Ventricular Filling Patterns in Dilated Cardiomyopathy

ECHOCARDIOGRAPHY, Issue 7 2005
Peter S. Rahko M.D.
Background: The long-term clinical benefit of beta blockade is well recognized, but data quantifying long-term effects of beta blockade on remodeling of the left ventricle (LV) is limited. Methods: This consecutive series evaluates the long-term response of the LV to the addition of carvedilol to conventional therapy for dilated cardiomyopathy. There were 33 patients who had a LV ejection fraction <45%, LV enlargement and symptomatic heart failure. Quantitative Doppler echocardiography was performed at baseline 6, 12, 24, and 36 months after initiation of carvedilol to evaluate LV ejection fraction, LV volume, wall stress, mass, regional function, and diastolic performance. Results: Compared to baseline there was a significant and sustained reduction in end-systolic volume and end-systolic wall stress with a corresponding improvement in LV ejection fraction. The LV mass did not decline but relative wall thickness increased toward normal. An analysis of regional wall motion responses showed an improvement in all areas, particularly the apical, septal, and lateral walls that was significantly more frequent in patients with a nonischemic etiology. Filling patterns of the LV remained abnormal throughout the study but changed with therapy suggesting a decline in filling pressures. These changes were sustained for 3 years. Conclusion: (1) The addition of carvedilol to conventional therapy for a dilated cardiomyopathy significantly improves LV ejection fraction and reduces LV end-systolic volume and wall stress for at least 3 years, (2) the response to 6 months of treatment predicts the long-term response, (3) the typical response is partial improvement of the LV, complete return to normal size, and function is uncommon, and (4) abnormalities of LV filling persist in virtually all patients throughout the course of treatment. [source]


Carvedilol Produces Sustained Long-Term Benefits: Follow-Up at 12 Years

CONGESTIVE HEART FAILURE, Issue 1 2009
John F. MacGregor MD
The authors measured long-term outcomes of patients who initiated carvedilol between 1990 and 1992 to test the hypothesis that carvedilol produces sustained benefits in heart failure patients. The study population consisted of 57 patients who completed a carvedilol placebo-controlled phase II trial. Patients were given open-label carvedilol and were titrated to the maximum dose. Patients were assessed by serial multigated acquisition, echocardiography, and symptom scores. Survival was assessed for all patients and censored as of January 1, 2004. Survival for ischemic vs nonischemic patients was compared using the log-rank test and further compared using Cox regression, controlling for covariates. Etiology of heart failure was ischemic in 15 patients and nonischemic in 42 patients. Median follow-up was 12.9 years. Resting left ventricular ejection fraction (LVEF) and heart failure symptom scores improved at 4 months of treatment and were sustained at 24 months. Left ventricular internal diameter in systole (LVIDS) and left ventricular internal diameter in diastole decreased significantly at 4 and 8 months, respectively, and LVIDS continued to improve at 24 months. Overall mortality was 43% in nonischemic patients and 73% in ischemic patients. In a multivariate analysis, ischemic etiology and baseline LVEF were significant predictors of mortality. Carvedilol produces sustained improvements in left ventricular remodeling and symptoms. Long-term survival is good, particularly in nonischemic patients. [source]


The Effects of Antihypertensive Treatment on the Doppler-Derived Myocardial Performance Index in Patients with Hypertensive Left Ventricular Hypertrophy: Results from the Swedish Irbesartan in Left Ventricular Hypertrophy Investigation Versus Atenolol (SILVHIA)

ECHOCARDIOGRAPHY, Issue 7 2009
Stefan Liljedahl M.D.
Objectives: To investigate the effects of antihypertensive treatment on the Doppler-derived myocardial performance index (MPI) in patients with hypertensive left ventricular hypertrophy. Methods: The MPI was measured at baseline and after 48 weeks of antihypertensive treatment in 93 participants of the SILVHIA trial, where individuals with primary hypertension and left ventricular hypertrophy were randomized to double blind treatment with either irbesartan or atenolol. Results: Antihypertensive treatment lowered MPI (mean difference ,0.03 ± 0.01, P = 0.04). Changes in MPI by treatment were associated with changes in left ventricular ejection fraction (,-coefficient ,0.35 P = 0.005), stroke volume/pulse pressure (reflecting arterial compliance, ,-coefficient ,0.39 P < 0.001) and peripheral vascular resistance (,-coefficient 0.28 P < 0.04). Furthermore, there was a borderline significant association between changes in MPI and changes in E-wave deceleration time (reflecting diastolic function, ,-coefficient 0.23, P = 0.06). No associations were found between changes in MPI and changes in blood pressure, E/A-ratio, left ventricular mass index, relative wall thickness or heart rate. A stepwise multivariable regression model confirmed the association between changes in MPI and changes in ejection fraction and stroke volume/pulse pressure (all P < 0.05), as well as the trend for E-wave deceleration time (P = 0.08), but not in the case of peripheral vascular resistance. Conclusion: The MPI exhibited a modest decrease after 48 weeks of antihypertensive treatment in patients with hypertensive left ventricular hypertrophy. Changes in MPI were associated with changes in left ventricular function and vascular compliance, rather than with changes in left ventricular remodeling or blood pressure. [source]


Cardiac Allograft Remodeling After Heart Transplantation Is Associated with Increased Graft Vasculopathy and Mortality

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 1 2009
E. Raichlin
The aim of this study was to assess the patterns, predictors and outcomes of left ventricular remodeling after heart transplantation (HTX). Routine echocardiographic studies were performed and analyzed at 1 week, 1 year and 3,5 years after HTX in 134 recipients. At each study point the total cohort was divided into three subgroups based on determination of left ventricle mass and relative wall thickness: (1) NG,normal geometry (2) CR,concentric remodeling and (3) CH,concentric hypertrophy. Abnormal left ventricular geometry was found as early as 1 week after HTX in 85% of patients. Explosive mode of donor brain death was the most significant determinant of CH (OR 2.9, p = 0.01) at 1 week. CH at 1 week (OR 2.72, p = 0.01), increased body mass index (OR 1.1, p = 0.01) and cytomegalovirus viremia (OR , 4.06, p = 0.02) were predictors of CH at 1 year. CH of the cardiac allograft at 1 year was associated with increased mortality as compared to NG (RR 1.87, p = 0.03). CR (RR 1.73, p = 0.027) and CH (RR 2.04, p = 0.008) of the cardiac allograft at 1 year is associated with increased subsequent graft arteriosclerosis as compared to NG. [source]