Least Effective (least + effective)

Distribution by Scientific Domains


Selected Abstracts


Bioremediation of 6 % [w/w] Diesel-Contaminated Mainland Soil in Singapore: Comparison of Different Biostimulation and Bioaugmentation Treatments

ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 1 2006
M. Mathew
Abstract The efficacy of indigenous microorganisms to degrade diesel oil in contaminated mainland sites in Singapore was investigated. A semi-scale trial was made by spiking topsoil with 6,% [w/w] of diesel oil. The results indicated that in the presence of NPK commercial (Rosasol®) fertilizer a 53,% reduction in contaminant concentration was recorded after 60,days compared to untreated controls while the addition of a mixture of urea and K2HPO4 effected a 48,% reduction in the Total Recoverable Petroleum Hydrocarbons. A commercial culture and an enriched/isolated microbial association proved to be the least effective with 25 and 9,% reductions, respectively. The results confirmed the bioremediation potential of indigenous microorganisms for diesel-oil contaminated mainland soil. Identification of the persistent compounds was done and perceived as a tool in decision-making on strategies for speeding up of the degradation process to achieve clean-up standards in shorter remediation periods. [source]


Captures of the olive fruit fly Bactrocera oleae on spheres of different colours

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2001
Byron I. Katsoyannos
Abstract Alighting and capture of wild olive fruit flies, Bactrocera oleae (Rossi) (Diptera, Tephritidae), on spheres of seven different colours was studied on Chios island, Greece. The 70-mm-diam plastic spheres, coated with adhesive, were suspended on olive trees. Yellow and orange spheres trapped the greatest number of males while red and black spheres trapped the greatest number of females. White and blue spheres were the least effective for both sexes. Peak captures occurred in the late afternoon and especially around sunset. Since mating takes place in the last hours of the photophase, the increased captures during that period may be related to the sexual behaviour of the fly. When red spheres were assessed against glass McPhail traps baited with 2% ammonium sulphate, which consist a standard tool for monitoring the olive fruit fly in Greece, there were no significant differences in male captures. However, spheres trapped almost three times as many females as McPhail traps. The possible mechanisms underlying colour discrimination, the motivation of alighting flies and the possible use of red spheres for monitoring and controlling B. oleae are discussed. [source]


Inhibition of lipid peroxidation by anthocyanins, anthocyanidins and their phenolic degradation products

EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 1 2007
Jonathan E. Brown
Abstract Food components that delay or prevent biomolecule oxidation may be relevant in shelf life extension as well as disease prevention. Anthocyanins are a potentially important group of compounds, but they are prone to degradation both in vitro and in vivo, producing simple phenols. In this study, eight structurally related (poly)phenols [anthocyan(id)ins and phenolic acids] were examined for their ability to inhibit lipid oxidation at physiologically relevant concentrations (100,1000,nM) using the Cu2+ -mediated low-density lipoprotein oxidation model. Interaction between each (poly)phenol and Cu2+ ions was also investigated. (Poly)phenols with an ortho -dihydroxy group arrangement, i.e. cyanidin-3-glucoside, cyanidin and protocatechuic acid, were the most effective within their class, extending the lag phase to oxidation by 137, 255 and 402%, respectively (at 1000,nM). At the same concentration, trihydroxy-substituted compounds (delphinidin and gallic acid) were of intermediate efficacy, extending the lag phase by 175 and 38%, respectively. Compounds with the 4'-hydroxy-3',5'-methoxy arrangement (i.e. malvidin-3-glucoside and malvidin) were the least effective (3 and 58% extension, respectively), while syringic acid (4-hydroxy-3,5-dihydroxy benzoic acid) was pro-oxidant (lag phase shortened by 31%). (Poly)phenols with the ortho -dihydroxy arrangement chelated Cu2+ ions, which in part explains their greater efficacy over the other (poly)phenols in this model oxidation system. However, differences in their hydrogen-donating properties and their partitioning between lipid and hydrophilic phases are also relevant in explaining these structure-activity relationships. [source]


Apoptosis inducing activity of viscin, a lipophilic extract from Viscum album L.

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 1 2005
K. Urech
Detection of antiproliferative activity and bioactivity-guided fractionation of viscin, a lipophilic extract from Viscum album L., led to the isolation of betulinic acid, oleanolic acid and ursolic acid as active components. Viscin, betulinic acid, oleanolic acid and ursolic acid inhibited growth and induced apoptotic cell death in Molt4, K562 and U937 leukaemia cells. The growth inhibitory effect of viscin was more pronounced in Molt4 and U937 cells (IC50 (concentration that inhibited cell proliferation by 50%): 118 ± 24 and 138 ± 24 ,g mL,1) than in K562 cells (IC50: 252 ± 37 ,g mL,1). Oleanolic acid was the least effective in all cell lines (7.5,45.5% inhibition at 10 ,g mL,1) and ursolic acid the most active in Molt4 and U937 cells (81.8 and 97.8% inhibition, respectively, at 5 ,g mL,1). A dose-dependent loss of membrane phospholipid asymmetry associated with apoptosis was induced in all cell lines as shown in flow cytometry by the externalization of phosphatidylserine and morphological changes in cell size and granularity. There were differences in individual cell lines' response towards the apoptosis-inducing effect of viscin, betulinic acid, oleanolic acid and ursolic acid. The triterpenoids ,-amyrin, ,-amyrinacetate, lupeol, lupeolacetate, ,-sitosterol and stigmasterol, and the fatty acids oleic acid, linoleic acid, palmitic acid and stearic acid were also present in the lipophilic extract. [source]


Wide variation in effectiveness of laboratory disinfectants against bacteriophages

LETTERS IN APPLIED MICROBIOLOGY, Issue 6 2008
D.E. Halfhide
Abstract Aims:, The purpose of this study was to identify an effective disinfectant for the inactivation of the bacteriophages (phages) being used in our laboratory, as published studies on phage inactivation are far from unanimous in their conclusions. Methods and Results:, The phages studied were three closely related strains of Myoviridae and three strains of Siphoviridae. Three disinfectants which are used commonly in microbiology laboratories were evaluated: Virkon (1%), ethanol (75%) and sodium hypochlorite (2500 ppm available chlorine). The most effective of these was Virkon, which inactivated all six phages rapidly. Ethanol was effective against the Myoviridae but had little effect on the Siphoviridae. Sodium hypochlorite was the least effective of the disinfectants evaluated. Conclusions:, The findings of this study demonstrate a wide diversity in the effectiveness of disinfectants tested for inactivation of phages. Significance and Impact of the Study:, Of the disinfectants tested Virkon is the most suitable choice for those unable to carry out disinfection validation studies, or where a broad spectrum disinfectant against phages is required. All of the phages in this study showed resilience to inactivation by sodium hypochlorite, and therefore this disinfectant is an unwise choice for use against phage without first assessing its effectiveness. [source]


Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes.

PHYTOTHERAPY RESEARCH, Issue 7 2004
Part III.
Abstract Flavonoids are found universally in plants and act as free radical scavenging and chelating agents with antiin,ammatory, antiischemic, vasodilating and chemoprotective properties. In this study, the antilipoperoxidative and cytoprotective effects of apigenin, baicalein, kaempferol, luteolin and quercetin against doxorubicin-induced oxidative stress were investigated in isolated rat heart cardiac myocytes, mitochondria and microsomes. After preincubation of cardiomyocytes with the test compounds for 1 h the cardiomyocytes were treated with the toxic agent, doxorubicin (100 µM for 8 h). Cardiomyocyte protection was assessed by extracellular LDH and cellular ADP and ATP production. Cytoprotection was concentration dependent for baicalein > luteolin , apigenin > quercetin > kaempferol. All test compounds had signi,cantly better protective effects than dexrazoxan, an agent currently used for adjuvant therapy during anthracycline antibiotic therapy. In microsomes/mitochondria the IC50 values of lipid peroxidation inhibition for quercetin, baicalein, kaempferol, luteolin, and apigenin were 3.1 ± 0.2/8.2 ± 0.6, 3.3 ± 0.3/9.6 ± 0.5, 3.9 ± 0.3/10.1 ± 0.8, 22.9 ± 1.7/18.2 ± 0.7, and 338.8 ± 23.1/73.1 ± 6.4 mM, respectively. The antilipoperoxidative activity of apigenin differed from its cytoprotective effects, but correlated with the free radical scavenging of 2,2-diphenyl-1-picrylhydrazyl radical and half peak oxidation potential (Ep/2). Apigenin was the least effective of the ,avonoids studied in all models except the cardiomyocyte model where its cardiomyocyte cytoprotective effect was comparable to other compounds. Copyright © 2004 John Wiley & Sons, Ltd. [source]