Lever Arms (lever + arm)

Distribution by Scientific Domains


Selected Abstracts


Myosin diversity in the diatom Phaeodactylum tricornutum,

CYTOSKELETON, Issue 3 2010
Matthew B. Heintzelman
Abstract This report describes the domain architecture of ten myosins cloned from the pennate diatom Phaeodactylum tricornutum. Several of the P. tricornutum myosins show similarity to myosins from the centric diatom Thalassiosira pseudonana as well as to one myosin from the oomycete Phytophthora ramorum. The P. tricornutum myosins, ranging in size from 126 kDa to over 250 kDa, all possess the canonical head, neck and tail domains common to most myosins, though variations in each of these domains is evident. Among the features distinguishing several of the diatom myosin head domains are N-terminal SH3-like domains, variations in or near the P-loop and Loop 1 regions close to the nucleotide binding pocket, and extended converter domains. Variations in the length of the neck domain or lever arm, defined by the light chain-binding IQ motifs, are apparent with the different diatom myosins predicted to contain from one to nine IQ motifs. Protein domains found within the P. tricornutum myosin tails include regions of coiled-coil structure, ankyrin repeats, CBS domain pairs, a PB1 domain, a kinase domain and a FYVE-finger motif. As many of these features have never before been characterized in myosins of any type, it is likely that these new diatom myosins will expand the repertoire of known myosin behaviors. © 2010 Wiley-Liss, Inc. [source]


Functional anatomy of the olecranon process in hominoids and plio-pleistocene hominins

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2004
Michelle S.M. Drapeau
Abstract This study examines the functional morphology of the olecranon process in hominoids and fossil hominins. The length of the bony lever of the triceps brachii muscle (TBM) is measured as the distance between the trochlear articular center and the most distant insertion site of the TBM, and olecranon orientation is measured as the angle that this bony lever makes with the long axis of the ulna. Results show that Homo, Pan, Gorilla, most monkeys, and the Australopithecus fossils studied have similar relative olecranon lengths. Suspensory hominoids and Ateles have shorter olecranons, suggesting, in some instances, selection for greater speed in extension. The orientation that the lever arm of the TBM makes with the long axis of the ulna varies with preferred locomotor mode. Terrestrial primates have olecranons that are more posteriorly oriented as body size increases, fitting general models of terrestrial mammalian posture. Arboreal quadrupeds have more proximally oriented lever arms than any terrestrial quadrupeds, which suggests use of the TBM with the elbow in a more flexed position. Olecranon orientation is not consistent in suspensory hominoids, although they are all characterized by orientations that are either similar or more posterior than those observed in quadrupeds. Homo and the fossils have olecranons that are clearly more proximally oriented than expected for a quadruped of their size. This suggests that Homo and Australopithecus used their TBM in a flexed position, a position most consistent with manipulatory activities. Am J Phys Anthropol, 2003. © 2003 Wiley-Liss, Inc. [source]


Biomechanics of the Fractured Medial Coronoid Process and the Isolated Anconeal Process in the Canine Elbow Joint

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2005
J. Maierl
Introduction:, Elbow dysplasia is one of the most important orthopaedic diseases of the canine elbow joint. The medial coronoid process (MCP) and the anconeal process (AP) are involved with a high incidence. Aims:, The aim of this study was to clarify whether these processes are especially loaded resulting in osteoarthrosis. Material and Methods:, Elbow joints were examined from dogs of various breeds, with a body weight over 20 kg and an age ranging from 1 to 12 years. Only joints without damage to the articular cartilage have been included in this investigation. Articular surfaces have been evaluated macroscopically, subchondral bone density (long-term loading) and split-lines (long-term tensile loading) have been determined. Results:, In the humeral fossa olecrani, there was a distinct impression on the inner side of the lateral compared to the medial epicondyle. In the ulna, the MCP was much greater than the lateral coronoid indicating that the medial process has to support the humeral condyle to a higher extent. Subchondral split lines with a transverse orientation in the fossa olecrani gave evidence of long-term transverse tensile loading in this area. Split lines on the MCP were oriented radially as if the lateral edge was bent downwards. Subchondral bone density in the fossa olecrani was higher towards the lateral epicondyle in comparison to the medial. Furthermore, there was a bone density maximum on the medial part of the humeral condyle opposite of the MCP with its very high density. Discussion:, Gait analyses showed that there is a transverse, medially oriented force of up to 4% bodyweight acting on the paw during midstance. As the carpus is stable when slightly hyperextended during midstance loading there is a long lever arm from the ground up to an assumed rotation centre in the depth of the trochlear notch. The medially directed ground reaction force slightly rotates the forearm inwards causing a bending moment about the elbow joint, which leads to an increased pressure of the AP and the MCP. This bending in addition to sagittal loading is the reason for the high susceptibility of the MCP and AP. [source]


Magnebike: A magnetic wheeled robot with high mobility for inspecting complex-shaped structures

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 5 2009
Fabien Tāche
This paper describes the Magnebike robot, a compact robot with two magnetic wheels in a motorbike arrangement, which is intended for inspecting the inner casing of ferromagnetic pipes with complex-shaped structures. The locomotion concept is based on an adapted magnetic wheel unit integrating two lateral lever arms. These arms allow for slight lifting off the wheel in order to locally decrease the magnetic attraction force when passing concave edges, as well as laterally stabilizing the wheel unit. The robot has the main advantage of being compact (180 × 130 × 220 mm) and mechanically simple: it features only five active degrees of freedom (two driven wheels each equipped with an active lifter stabilizer and one steering unit). The paper presents in detail design and implementation issues that are specific to magnetic wheeled robots. Low-level control functionalities are addressed because they are necessary to control the active system. The paper also focuses on characterizing and analyzing the implemented robot. The high mobility is shown through experimental results: the robot not only can climb vertical walls and follow circumferential paths inside pipe structures but it is also able to pass complex combinations of 90-deg convex and concave ferromagnetic obstacles with almost any inclination regarding gravity. It requires only limited space to maneuver because turning on the spot around the rear wheel is possible. This high mobility enables the robot to access any location in the specified environment. Finally the paper analyzes the maximum payload for different types of environment complexities because this is a key feature for climbing robots and provides a security factor about the risk of falling and slipping. © 2009 Wiley Periodicals, Inc. [source]


Locomotor variation and bending regimes of capuchin limb bones

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2009
Brigitte Demes
Abstract Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate ("terrestrial"), on an elevated pole ("arboreal"), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. "Arboreal" locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than "terrestrial" locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further. Am J Phys Anthropol, 2009. © 2009 Wiley-Liss, Inc. [source]


Functional anatomy of the olecranon process in hominoids and plio-pleistocene hominins

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2004
Michelle S.M. Drapeau
Abstract This study examines the functional morphology of the olecranon process in hominoids and fossil hominins. The length of the bony lever of the triceps brachii muscle (TBM) is measured as the distance between the trochlear articular center and the most distant insertion site of the TBM, and olecranon orientation is measured as the angle that this bony lever makes with the long axis of the ulna. Results show that Homo, Pan, Gorilla, most monkeys, and the Australopithecus fossils studied have similar relative olecranon lengths. Suspensory hominoids and Ateles have shorter olecranons, suggesting, in some instances, selection for greater speed in extension. The orientation that the lever arm of the TBM makes with the long axis of the ulna varies with preferred locomotor mode. Terrestrial primates have olecranons that are more posteriorly oriented as body size increases, fitting general models of terrestrial mammalian posture. Arboreal quadrupeds have more proximally oriented lever arms than any terrestrial quadrupeds, which suggests use of the TBM with the elbow in a more flexed position. Olecranon orientation is not consistent in suspensory hominoids, although they are all characterized by orientations that are either similar or more posterior than those observed in quadrupeds. Homo and the fossils have olecranons that are clearly more proximally oriented than expected for a quadruped of their size. This suggests that Homo and Australopithecus used their TBM in a flexed position, a position most consistent with manipulatory activities. Am J Phys Anthropol, 2003. © 2003 Wiley-Liss, Inc. [source]


Jaw Mechanics in Basal Ceratopsia (Ornithischia, Dinosauria)

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 9 2009
Kyo Tanoue
Abstract Ceratopsian dinosaurs were a dominant group of herbivores in Cretaceous terrestrial ecosystems. We hypothesize that an understanding of the feeding system will provide important insight into the evolutionary success of these animals. The mandibular mechanics of eight genera of basal ceratopsians was examined to understand the variability in shape of the jaws and the early evolution of the masticatory system in Ceratopsia. Data were collected on lever arms, cranial angles and tooth row lengths. The results indicate that psittacosaurids had higher leverage at the beak and in the rostral part of the tooth row than basal neoceratopsians, but lower leverage in the caudal part of the tooth row. Although the vertebrate mandible is generally considered as a third-class lever, that of basal neoceratopsians acted as a second-class lever at the caudal part of the tooth row, as is also true in ceratopsids. When total input force from the mandibular adductor muscles on both sides of the skull is considered, the largest bite force in basal ceratopsian tooth rows was exerted in the caudal part of the tooth row at the caudal extremity of the zone with near-maximum input force. Medially positioned teeth generate higher leverage than laterally positioned teeth. The largest bite force in all basal ceratopsians is smaller than the maximum input force, a limit imposed by the morphology of the basal ceratopsian masticatory system. In ceratopsids, caudal extension of the tooth row resulted in a much larger bite force, even exceeding the maximum input force. Anat Rec, 292:1352,1369, 2009. © 2009 Wiley-Liss, Inc. [source]