Home About us Contact | |||
Leucocyte Recruitment (leucocyte + recruitment)
Selected AbstractsInterferon-, differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophagesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2002Karl Georg Häusler Abstract During bacterial infections of the CNS, activated microglia could support leucocyte recruitment to the brain through the synthesis of cyto- and chemokines. In turn, invading leucocytes may feedback on microglial cells to influence their chemokine release pattern. Here, we analyzed the capacity of interferon-, (IFN,) to serve as such a leucocyte-to-microglia signal. Production of cyto- and chemokines was stimulated in mouse microglia cultures by treatments with lipopolysaccharide (LPS) from Gram-negative Escherichia coli or cell walls from Gram-positive Streptococcus pneumoniae (PCW). IFN, presence during the stimulation (0.1,100 ng/mL) modulated the patterns of LPS- and PCW-induced cyto- and chemokine release in a dose-dependent, potent and complex manner. While amounts of TNF, and IL-6 remained nearly unchanged, IFN, enhanced the production of IL-12, MCP-1 and RANTES, but attenuated that of KC, MIP-1, and MIP-2. Release modulation was obtained with IFN, preincubation (treatment of cells before LPS or PCW administration), coincubation and even delayed addition to an ongoing LPS or PCW stimulation. Together the changes observed for the microglial chemokine release under IFN, would shift the chemoattractive profile from favouring neutrophils to a preferential attraction of monocytes and T lymphocyte populations , as actually seen during the course of bacterial meningitis. The findings support the view of activated microglia as a major intrinsic source for an instant production of a variety of chemokines and suggest that leucocyte-derived IFN, could potentially regulate the microglial chemokine release pattern. [source] Human B cells express the orphan chemokine receptor CRAM-A/B in a maturation-stage-dependent and CCL5-modulated mannerIMMUNOLOGY, Issue 2 2008Tanja N. Hartmann Summary Chemokines orchestrate the organization of leucocyte recruitment during inflammation and homeostasis. Despite growing knowledge of chemokine receptors, some orphan chemokine receptors are still not characterized. The gene CCRL2 encodes such a receptor that exists in two splice variants, CRAM-A and CRAM-B. Here, we report that CRAM is expressed by human peripheral blood and bone marrow B cells, and by different B-cell lines dependent on the B-cell maturation stage. Intriguingly, CRAM surface expression on the pre-B-cell lines Nalm6 and G2 is specifically upregulated in response to the inflammatory chemokine CCL5 (RANTES), a chemokine that is well known to play an important role in modulating immune responses. Although Nalm6 cells do not express any of the known CCL5 binding receptors, extracellular signal-regulated kinases 1 and 2 (ERK1/2) are phosphorylated upon CCL5 stimulation, suggesting a direct effect of CCL5 through the CRAM receptor. However, no calcium mobilization or migratory responses upon CCL5 stimulation are induced in B-cell lines or in transfected cells. Also, ERK1/2 phosphorylation cannot be inhibited by pertussis toxin, suggesting that CRAM does not couple to Gi proteins. Our results describe the expression of a novel, non-classical chemokine receptor on B cells that is potentially involved in immunomodulatory functions together with CCL5. [source] The Fps/Fes kinase regulates leucocyte recruitment and extravasation during inflammationIMMUNOLOGY, Issue 4 2007Sean A. Parsons Summary Fps/Fes and Fer comprise a distinct subfamily of cytoplasmic protein-tyrosine kinases, and have both been implicated in the regulation of innate immunity. Previous studies showed that Fps/Fes-knockout mice were hypersensitive to systemic lipopolysaccharide (LPS) challenge, and Fer-deficient mice displayed enhanced recruitment of leucocytes in response to localized LPS challenge. We show here for the first time, a role for Fps in the regulation of leucocyte recruitment to areas of inflammation. Using the cremaster muscle intravital microscopy model, we observed increased leucocyte adherence to venules, and increased rates and degrees of transendothelial migration in Fps/Fes-knockout mice relative to wild-type animals subsequent to localized LPS challenge. There was also a decreased vessel wall shear rate in the post-capillary venules of LPS-challenged Fps/Fes-knockout mice, and an increase in neutrophil migration into the peritoneal cavity subsequent to thioglycollate challenge. Using flow cytometry to quantify the expression of surface molecules, we observed prolonged expression of the selectin ligand PSGL-1 on peripheral blood neutrophils from Fps/Fes-knockout mice stimulated ex vivo with LPS. These observations provide important insights into the observed in vivo behaviour of leucocytes in LPS-challenged Fps/Fes-knockout mice and provide evidence that the Fps/Fes kinase plays an important role in the innate immune response. [source] Association between ICAM-1 Gly-Arg polymorphism and renal parenchymal scarring following childhood urinary tract infectionINTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 1 2006R. A. Gbadegesin Summary Renal parenchymal scarring (RPS) following urinary tract infection (UTI) is an important cause of renal morbidity in children. Studies have shown that the intensity of the inflammatory response following infection is related to the risk of RPS. However, genetic variability in this response has not been studied. Adhesion molecules play a crucial role in leucocyte recruitment following infection, and polymorphisms have been reported in the genes for key cell adhesion molecules. We have investigated the possibility that children who develop RPS following UTI may exhibit altered genotype or allele frequencies for polymorphisms of the intercellular adhesion molecule-1 (ICAM-1) (exons 4 and 6), E-selectin (exons 2 and 4), platelet endothelial cell adhesion molecule-1 (PECAM-1) (exon 3) and CD11b (3,UTR) genes, which may predict outcome of UTI. DNA was isolated from 99 children shown to have developed RPS, 43 children with no evidence of scarring (NS) following UTI and 170 healthy controls. Genotyping was performed by restriction fragment length polymorphism (RFLP) analysis. When the RPS group was compared with the NS group, there was a significant reduction in the frequency of the ICAM-1 exon 4 A allele (10.6 vs. 21.3%, respectively, ,2= 6.01, P= 0.014). There was no significant difference in either allele or genotype frequency for any of the other polymorphisms studied. These data suggest that the A allele of the ICAM-1 exon 4 polymorphism may protect against the risk of RPS following UTI and may participate in the regulation of the inflammatory response following UTI. [source] Anti-inflammatory, analgesic and anti-oedematous effects of Lafoensia pacari extract and ellagic acidJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2006Alexandre P. Rogerio Lafoensia pacari St. Hil. (Lythraceae) is used in traditional medicine to treat inflammation. Previously, we demonstrated the anti-inflammatory effect that the ethanolic extract of L. pacari has in Toxocara canis infection (a model of systemic eosinophilia). In this study, we tested the antiinflammatory activity of the same L. pacari extract in mice injected intraperitoneally with ,-glucan present in fraction 1 (F1) of the Histoplasma capsulatum cell wall (a model of acute eosinophilic inflammation). We also determined the anti-oedematous, analgesic and anti-pyretic effects of L. pacari extract in carrageenan-induced paw oedema, acetic acid writhing and LPS-induced fever, respectively. L. pacari extract significantly inhibited leucocyte recruitment into the peritoneal cavity induced by ,-glucan. In addition, the L. pacari extract presented significant analgesic, anti-oedematous and anti-pyretic effects. Bioassay-guided fractionation of the L. pacari extract in the F1 model led us to identify ellagic acid. As did the extract, ellagic acid presented anti-inflammatory, anti-oedematous and analgesic effects. However, ellagic acid had no anti-pyretic effect, suggesting that other compounds present in the plant stem are responsible for this effect. Nevertheless, our results demonstrate potential therapeutic effects of L. pacari extract and ellagic acid, providing new prospects for the development of drugs to treat pain, oedema and inflammation. [source] |