Lesion Border (lesion + border)

Distribution by Scientific Domains


Selected Abstracts


Remyelination can be extensive in multiple sclerosis despite a long disease course

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2007
R. Patani
Experimental studies using models of multiple sclerosis (MS) indicate that rapid and extensive remyelination of inflammatory demyelinated lesions is not only possible, but is the normal situation. The presence of completely remyelinated MS lesions has been noted in numerous studies and routine limited sampling of post mortem MS material suggests that remyelination may be extensive in the early stages but eventually fails. However, visual macroscopic guided sampling tends to be biased towards chronic demyelinated lesions. Here we have extensively sampled cerebral tissue from two MS cases to investigate the true extent of remyelination. Sections were cut from 185 cerebral tissue blocks and stained with haematoxylin and eosin (H&E), luxol fast blue and cresyl fast violet (LFB/CFV) and anti-myelin oligodendrocyte glycoprotein, human leucocyte antigen-DR (HLA-DR) and 200 kDa neurofilament protein antibodies. Demyelinated areas were identified in 141 blocks, comprising both white matter (WMLs) and/or grey matter lesions. In total, 168 WMLs were identified, 22% of which were shadow plaques, 73% were partially remyelinated and only 5% were completely demyelinated. The average extent of lesion remyelination for all WMLs investigated was 47%. Increased density of HLA-DR+ macrophages and microglia at the lesion border correlated significantly with more extensive remyelination. Results from this study of two patients with long standing disease suggest that remyelination in MS may be more extensive than previously thought. [source]


Extensive Cortical Remyelination in Patients with Chronic Multiple Sclerosis

BRAIN PATHOLOGY, Issue 2 2007
Monika Albert MD
Recent studies revealed prominent cortical demyelination in patients with chronic multiple sclerosis (MS). Demyelination in white matter lesions is frequently accompanied by remyelination. This repair process, however, often remains incomplete and restricted to the lesion border. In the present study, we examined the frequency and extent of remyelination in cortical and white matter lesions in autopsy brain tissue of 33 patients with chronic MS. The majority of patients (29 of 33) harbored cortical demyelination. Remyelination of cortical lesions was identified light microscopically by the presence of thin and irregularly arranged myelin sheaths, and confirmed by electron microscopy. Extensive remyelination was found in 18%, remyelination restricted to the lesion border in 54%, and no remyelination in 28% of cortical lesions. A direct comparison of the extent of remyelination in white matter and cortical lesions of the same patients revealed that remyelination of cortical lesions was consistently more extensive. In addition, g-ratios of fibers in areas of "normal appearing cortex" yielded values consistent with remyelination. Our data confirm the high prevalence of cortical demyelination in chronic MS and imply that the propensity to remyelinate is high in cortical MS lesions. [source]


Selective Neuronal Vulnerability Following Mild Focal Brain Ischemia in the Mouse

BRAIN PATHOLOGY, Issue 4 2003
Juri Katchanov
The evolution of cellular damage over time and the selective vulnerability of different neuronal subtypes was characterized in the striatum following 30-minute middle cerebral artery occlusion and reperfusion in the mouse. Using autoradiography we found an increase in the density of [3H]PK11195 binding sites,likely reflecting microglial activation,in the lesion border at 3 days and in the whole striatum from 10 days to 6 weeks. This was accompanied by a distinct loss of [3H]flumazenil and [3H]CGP39653 binding sites from 10 days up to 6 weeks reflecting neuronal loss. Brain ischemia resulted in a substantial loss of medium spiny projection neurons as seen at three days by Nissl staining, TUNEL and immunocytochemistry using antibodies against microtubule-associated protein (MAP2), NeuN, (,-opioid receptors, substance P, Lenkephalin, neurokinin B, choline acetyltransferase, parvalbumin, calretinin and somatostatin. Both patch and matrix compartments were involved in ischemic damage. In contrast, the numbers of cholinergic, GABAergic, and somatostatin-containing interneurons in the ischemic striatum were not different from those in the contralateral hemisphere at 3 and 14 days. A low density of glutamate receptors, the ability to sequester calcium by calcium-binding proteins and other hitherto unidentified factors may explain this relative resistance of interneurons to acute ischemia. [source]


NG2 proteoglycan-expressing cells of the adult rat brain: Possible involvement in the formation of glial scar astrocytes following stab wound

GLIA, Issue 3 2005
G. Alonso
Abstract Stab wound lesion to the adult central nervous system induces strong proliferative response that is followed by the formation of a dense astroglial scar. In order to determine the origin of those astrocytes composing the glial scar, the cell proliferation marker bromodeoxyuridine (BrdU) was administered to lesioned rats that were fixed 3 h or 6 days later. At 3 h after the BrdU administration, labeled nuclei were frequently associated with either NG2+ cells or microglia/macrophages, but rarely with astrocytes expressing glial fibrillary acidic protein (GFAP). Six days later, by contrast, numerous BrdU-labeled nuclei were associated with astrocytes located along the lesion borders. After the injection of a viral vector of the green fluorescent protein (GFP) into the lesional cavity, GFP was preferentially detected within NG2- or GFAP-labeled cells when lesioned animals were fixed 1 or 6 days after the injections, respectively. The combined detection of glial markers within cells present in the lesioned area indicated that, although they rarely express GFAP, the marker of mature astrocytes, NG2+ cells located along the lesion borders frequently express nestin and vimentin, i.e., two markers of immature astrocytes. Lastly, chronic treatment of lesioned rats with dexamethasone was found to inhibit the proliferation of NG2+ cells present within the lesioned area and to subsequently alter the formation of a dense astroglial scar. Taken together, these data strongly suggest that following a surgical lesion, at least a portion of the astrocytes that constitute the glial scar are issued from resident NG2+ cells. © 2004 Wiley-Liss, Inc. [source]