Length Polymorphism Markers (length + polymorphism_marker)

Distribution by Scientific Domains

Kinds of Length Polymorphism Markers

  • amplified fragment length polymorphism marker
  • fragment length polymorphism marker


  • Selected Abstracts


    Comparative linkage map development and identification of an autosomal locus for insensitive acetylcholinesterase-mediated insecticide resistance in Culex tritaeniorhynchus

    INSECT MOLECULAR BIOLOGY, Issue 3 2001
    A. Mori
    Abstract A comparative linkage map for Culex tritaeniorhynchus was constructed based on restriction fragment length polymorphism markers using cDNAs from Aedes aegypti. Linear orders of marker loci in Cx. tritaeniorhynchus were identical to Culex pipiens wherein chromosomes 2 and 3 reflect whole-arm rearrangements compared to A. aegypti. However, the sex determination locus in Cx. tritaeniorhynchus maps to chromosome 3, in contrast to Cx. pipiens and Ae. aegypti where it is located on chromosome 1. Our results indicate that insensitive acetylcholinesterase (AChE)-mediated organophosphate resistance is controlled by a single major gene (AChER) on chromosome 2, while the AChE structural gene (Ace) is located on chromosome 1. No evidence for a second Ace gene was observed, even under very low stringency hybridization conditions. [source]


    Tuscany autochthonous cattle breeds: an original genetic resource investigated by AFLP markers

    JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 1 2006
    R. Negrini
    Summary The aim of this study was to assess the genetic diversity of four autochthonous cattle breeds of Tuscany and their relationships in comparison with Italian Friesian and Italian Brown, using amplified fragment length polymorphism markers. A total of 212 individuals were genotyped with three primer combinations generating 102 polymorphic markers. Average expected heterozygosity ranged from 0.23 in Mucca Pisana to 0.26 in Chianina, Italian Friesian, Italian Brown and Maremmana. The differences resulted not significant (Kruskall,Wallis test, p = 0.416). Gst-B index revealed that 86% of the total genetic variance is retained within population and only 14% is accounted by the between populations component. Multivariate analysis at individual and population level indicated that: (i) Calvana and Chianina are quite separate from the other breeds as an effect of the bottleneck experienced or as a signature of different origin; (ii) Podolian, Maremmana and Italian Brown clustered with the double purpose Mucca Pisana, revealing their contribution to its admixed genetic make up; (iii) Italian Friesian behaved always as out group. The ,analysis of molecular variance' recovered a significant subdivision clustering the six populations into three groups: Italian Friesian and Italian Brown versus Maremmana and Mucca Pisana versus Chianina and Calvana (6% of the total variance). [source]


    Patterns of population genetic diversity in riparian and aquatic plant species along rivers

    JOURNAL OF BIOGEOGRAPHY, Issue 9 2010
    Olivier Honnay
    Abstract Aim, The downstream hydrochoric spread of seeds of aquatic and riparian plant species, without upstream compensation, can be expected to result in downstream accumulation of population genetic diversity. This idea has been termed the ,unidirectional dispersal hypothesis' and is the genetic equivalent of the more generally known ,drift paradox'. Our aim was to test this unidirectional diversity hypothesis, and to present a general synthesis of the patterns of population genetic variation across different riparian and aquatic plant species along rivers. Location, The Meuse River (Belgium) and rivers world-wide. Methods, First, we used amplified fragment length polymorphism markers to compare patterns of within- and between-population genetic diversity among three riparian plant species (Sisymbrium austriacum, Erysimum cheiranthoides and Rorippa sylvestris), typically occurring in different habitats along a gradient perpendicular to the Meuse River. Second, we performed a meta-analysis on studies reporting on the population genetic structure of riparian and aquatic plant species along rivers. Results, Along the Meuse River, we found significant genetic differentiation among populations of all three riparian species, and significant isolation by distance for one of them (R. sylvestris). There was no clear association between the typical habitat of a species and its population genetic structure. None of the three species provided evidence for the unidirectional dispersal hypothesis. The meta-analysis, based on 21 data records, did not support the unidirectional dispersal hypothesis either. Average weighted population genetic differentiation across species was significant. Main conclusions, Important mechanisms of upstream seed dispersal, probably through zoochory, together with higher seed recruitment opportunities in upstream habitats due to density dependence of recruitment, may explain the absence of downstream accumulation of genetic diversity. Also, it seems difficult to find consistent patterns in genetic variation in species from aquatic and riparian habitats. We argue that this is due to the recurrent extinctions and colonizations characteristic of these habitats, resulting in complex genetic patterns. Our results strongly support previous suggestions that stream ecology should consistently embrace metapopulation theory to be able to understand patterns of genetic diversity, as well as species diversity. [source]


    Population genetics and breeding system of Tupistra pingbianensis (Liliaceae), a naturally rare plant endemic to SW China

    JOURNAL OF SYSTEMATICS EVOLUTION, Issue 1 2010
    Qin QIAO
    Abstract The levels and partitioning of genetic diversity and inbreeding depression were investigated in Tupistra pingbianensis, a narrow endemic of southeast Yunnan, China, characterized by a naturally fragmented distribution due to extreme specialization on a rare habitat type. Here genetic diversity and patterns of genetic variation within and among 11 populations were analyzed using amplified fragment length polymorphism markers with 97 individuals across its whole geographical range. High levels of genetic variation were revealed both at the species level (P99= 96.012%; Ht= 0.302) and at the population level (P99= 51.41%; Hs= 0.224). Strong genetic differentiation among populations was also detected (FST= 0.2961; ,II= 0.281), which corresponded to results reported for typical animal-pollinated, mixed selfing, and outcrossing plant species. This result was consistent with mating patterns detected by our pollination experiments. The indirect estimate of gene flow based on ,II was low (Nm= 0.64). Special habitat and its life history traits might play an important role in shaping the genetic diversity and the genetic structure of this species. A pollination experiment also failed to detect significant inbreeding depression upon F1 fruit set, seed weight, and germinate rate fitness-traits. As a naturally rare species, T. pingbianensis is not seriously genetically impoverished and likely to have adapted to tolerating a high level of inbreeding early in its history, we propose this species need only periodic monitoring to ensure their continued persistence, but not intervention to remain viable. [source]


    Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment

    MOLECULAR ECOLOGY, Issue 2 2010
    MARGOT PARIS
    Abstract Identification of genes involved in local adaptation is particularly challenging for species functioning as a network of interconnected populations undergoing frequent extinctions,recolonizations, because populations are submitted to contrasted evolutionary pressures. Using amplified fragment length polymorphism markers, population genetic structure of the mosquito Aedes rusticus was analysed in five geographical areas of the French Rhône-Alpes region. We included a number of sites that were treated with the bio-insecticide Bacillus thuringiensis israelensis (Bti) for more than 15 years. Analysis of molecular variance revealed that most of the genetic variability was found within populations (96%), with no significant variation among geographical areas, although variation among populations within areas (4%) was significant. The global genetic differentiation index FST was low (0.0366 ± 0.167). However, pairwise FST values were significant and no isolation-by-distance at the regional level was observed, suggesting a metapopulation structure in this species. Bti -treatment had no effect on genetic structure and on within-population genetic diversity. Potential signatures of positive selection associated with Bti -treatment were detected for five loci, even though toxicological bioassays performed on field-collected larvae showed no significant difference in mortality between Bti -treated and nontreated sites. The difficulty of detecting moderate resistance in field-collected larvae together with possible differential persistence of toxins in the environment may explain our inability to detect a toxicological response to Bti in treated sites. The evidence for positive selection occurring at several genomic regions suggests a first step towards Bti resistance in natural mosquito populations treated with this bio-insecticide. Furthermore, this signal was detectable using genomic tools before any toxicological evidence for resistance could be identified. [source]


    Hybridization and Rorippa austriaca (Brassicaceae) invasion in Germany

    MOLECULAR ECOLOGY, Issue 7 2003
    W. Bleeker
    Abstract Introgressive hybridization between the invasive Rorippa austriaca and the native R. sylvestris in Germany has been studied using chloroplast DNA (trnL intron) and amplified fragment length polymorphism. Three hybrid zones between the invasive and native species were located in the Ruhr Valley (Mülheim) and at the River Main near Würzburg (Randersacker, Winterhausen). In each hybrid zone hybridization was indicated by additivity of region-specific amplified fragment length polymorphism markers proving independent hybridization events. The hybrids were either morphologically intermediate (R. × armoracioides) or were close to R. sylvestris. The trnL intron of R. austriaca is characterized by a species-specific deletion. This diagnostic chloroplast marker of R. austriaca was detected in three individuals of R. sylvestris providing evidence for introgression of the invasive chloroplast into the native species. Bidirectional introgression of R. austriaca markers into R. sylvestris and of R. sylvestris markers into R. austriaca was detected in the amplified fragment length polymorphism analysis. Some of the invasive R. austriaca populations showed high within-population variation. A possible association among introgression, within-population variation and invasion success is discussed. The morphologically intermediate hybrid R. × armoracioides is currently spreading in northern Germany. It forms large populations without its parent species R. austriaca and R. sylvestris. It is concluded that hybridization between invasive R. austriaca and native R. sylvestris may lead to the evolution of a new invasive species R. × armoracioides. [source]


    Sampling within the genome for measuring within-population diversity: trade-offs between markers

    MOLECULAR ECOLOGY, Issue 7 2002
    S. Mariette
    Abstract Experimental results of diversity estimates in a set of populations often exhibit contradictory patterns when different marker systems are used. Using simulations we identified potential causes for these discrepancies. These investigations aimed also to detect whether different sampling strategies of markers within the genome resulted in different estimates of the diversity at the whole genome level. The simulations consisted in generating a set of populations undergoing various evolutionary scenarios which differed by population size, migration rate and heterogeneity of gene flow. Population diversity was then computed for the whole genome and for subsets of loci corresponding to different marker techniques. Rank correlation between the two measures of diversity were investigated under different scenarios. We showed that the heterogeneity of genetic diversity either between loci (genomic heterogeneity, GH) or among populations (population heterogeneity, PH) varied greatly according to the evolutionary scenario considered. Furthermore, GH and PH were major determinants of the level of rank correlation between estimates of genetic diversities obtained using different kinds of markers. We found a strong positive relationship between the level of the correlation and PH, whatever the marker system. It was also shown that, when GH values were constantly low during generations, a reduced number of microsatellites was enough to predict the diversity of the whole genome, whereas when GH increased, more loci were needed to predict the diversity and amplified fragment length polymorphism markers would be more recommended in this case. Finally the results are discussed to recommend strategies for gene diversity surveys. [source]


    The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards

    MOLECULAR ECOLOGY, Issue 3 2002
    R. Ogden
    Abstract Fine-level taxon discrimination is important in biodiversity assessment and ecogeographical research. Genomic markers are often required for studies on closely related taxa, however, most existing mitochondrial and nuclear markers require prior knowledge of the genome and are impractical for use in small conservation projects. This study describes the application of amplified fragment length polymorphism (AFLP) to discriminate at four progressively finer evolutionary levels of Caribbean Anolis lizards from the central Lesser Antilles. AFLP is shown to be a rapid and effective method for discriminating between species. Separation increases with primer pair number and choice of primer combination appears to be noncritical. Initial population-level results show markedly less discriminatory power. A screening technique for the identification of population informative markers combining principal component and principal coordinate analyses is presented and assessed. Subsequent results show selected conspecific AFLP data to be remarkably congruent with those of mitochondrial DNA, microsatellite and morphological markers. The use of AFLP as a low-cost nuclear marker in species-level taxon discrimination is supported, whereas population level application demands further consideration. [source]


    Microsatellite isolation using amplified fragment length polymorphism markers: no cloning, no screening

    MOLECULAR ECOLOGY, Issue 12 2000
    E. E. Hakki
    [source]


    Studies on the mechanism of resistance to Bipolaris sorokiniana in the barley lesion mimic mutant bst1

    MOLECULAR PLANT PATHOLOGY, Issue 5 2009
    MATTIAS PERSSON
    SUMMARY The Bipolaris sorokiniana tolerant 1 (bst1) barley mutant is derived from fast neutron-irradiated seeds of wild-type Bowman(Rph3). The induced mutation was genetically localized to a position on chromosome 5HL distal to the centromere using amplified fragment length polymorphism markers. In addition, the defence responses and related gene expression in the bst1 mutant after fungal challenge were compared with those occurring in wild-type plants. Hydrogen peroxide generation, determined by 3,3-diaminobenzidine staining, revealed a clearly reduced level of bst1, compared with the wild-type, during the entire experimental time: 8,120 h post-inoculation (hpi). At 48 hpi, the wild-type samples displayed twice as much fungal mass and three times greater H2O2 production than bst1. At the same time, staining of B. sorokiniana showed less fungal growth in the spontaneous lesions of bst1 compared with the wild-type. Monitoring of defence-related genes at 48 hpi demonstrated strong expression of PR-1a, PR-2, PR-5 and PR-10 in bst1. A gene coding for a unique oxidoreductase enzyme, designated as HCP1, was expressed at much higher levels in inoculated leaves of the bst1 mutant than in those of the wild-type plant. Taken together, the results suggest that the defence to B. sorokiniana largely relies on salicylic acid-responsive pathogenesis-related (PR) genes, as well as selected reactive oxygen species and unknown HCP1 -associated factors. [source]


    Development of STS markers and QTL validation for common bacterial blight resistance in common bean

    PLANT BREEDING, Issue 1 2008
    S. Liu
    Abstract Common bacterial blight (CBB) of common bean (Phaseolus vulgaris L.), is one of the major diseases that decrease yield and quality. A major quantitative trait locus (QTL) for CBB resistance from line XAN 159 was transferred into two bean lines, HR45 and HR67. Previous studies identified that two markers are linked to this QTL but the chromosome location was not consistent. To identify more tightly linked markers and to verify the chromosome location, 65 additional markers were mapped using 81 recombinant inbred lines (RILs) derived from a cross HR67 × OAC95-4. The QTL was mapped to a 13 cM region on chromosome 1 and defined by eight molecular markers that explained 25,52% of the phenotypic variation. Six tightly linked amplified fragment length polymorphism markers (0.6,9.7 cM from the QTL peak) were converted into seven sequence tagged site markers, three of which were mapped to this QTL. Five tightly linked markers were used to screen 907 F2 plants derived from a cross HR45 × ,OAC Rex' and four of them were linked to each other within 4.2 cM. These markers may be useful in marker-assisted selection and map-based cloning of this major QTL. [source]


    Development and characterization of SCAR markers associated with a dominant genic male sterility in rapeseed

    PLANT BREEDING, Issue 1 2008
    D. F. Hong
    Abstract Rs1046AB is a dominant genic male sterility (DGMS) line in rapeseed, in which the sterility has always been thought to be conditioned by the interaction of a male sterility gene (Ms) and its non-allelic restorer gene (Rf). This system provides not only a tool for assisting in recurrent selection but also a promising system for hybrid production. Based on previous studies, two amplified fragment length polymorphism markers linked with the Ms gene were converted into a dominant and a co-dominant sequence characterized amplified region (SCAR) marker, respectively. The putative linear order relationship of three dominant SCAR markers with the same genetic distance from the Rf gene, was also determined by an examination of whether the homologues of these markers are present or not in different lines carrying Rf. A bigger fragment generated by the closest marker linked to the Rf gene was observed in all lines carrying the recessive allele rf, suggesting that this marker is a co-dominant marker, which was further confirmed by nucleotide sequence comparison of these fragments. SCAR markers specific for Ms and Rf will be especially valuable in marker-assisted DGMS three-line breeding. [source]


    Genomic DNA fingerprints as a tool for identifying cultivated types of radicchio (Cichorium intybus L.) from Veneto, Italy

    PLANT BREEDING, Issue 2 2003
    G. Barcaccia
    Abstract Red or variegated chicory (Cichorium intybus L., 2n = 2 ×= 18) native to, and very extensively cultivated in north-eastern Italy as a leafy vegetable, locally called ,radicchio', includes different types which represent valuable high-quality crops. The five major types of radicchio cultivated in the Veneto region were investigated by polymerase chain reaction (PCR)-derived markers. The experimental material was represented by two outbred populations (one of ,Variegato di Castel-franco' (CF) and one of ,Rosso di Verona' (VR)) and by eight inbred lines (three of early ,Rosso di Treviso' (TVP), three of late ,Rosso di Treviso' (TVT) and two of ,Rosso di Chioggia' (CH)). A total of 96 individual plant DNAs and 16 bulked DNAs of six plants each were assayed. The different types were well distinguished from one another if analysed by means of bulks using amplified fragment length polymorphism markers at the population level, while they were not if analysed at the individual level using random amplified polymorphic DNA, inter-simple sequence repeat and Arbitrarily Primed (AP)-PCR markers. The genetic variation was shown to be much higher within types than between types. This result suggests that, in each radicchio type, populations produced by breeders through controlled intercrossing (VR and CF) or repeated selfing (TVP, TVT and CH) conserved their well-separated gene pools over the years. The setting up of a molecular reference system seems to be feasible and suitable both for the precise identification of the single types of radicchio and for the evaluation of the extent of natural hybridization that can occur between different types. [source]


    Clustering of amplified fragment length polymorphism markers in a linkage map of rye

    PLANT BREEDING, Issue 2 2002
    B. Saal
    Abstract Amplified fragment length polymorphisms (AFLPs) are now widely used in DNA fingerprinting and genetic diversity studies, the construction of dense genetic maps and in fine mapping of agronomically important traits. The AFLP markers have been chosen as a source to extend and saturate a linkage map of rye, which has previously been generated by means of restriction fragment length polymorphism, random amplified polymorphic DNA, simple sequence repeat and isozyme markers. Gaps between linkage groups, which were known to be part of chromosome 2R, have been closed, thus allowing the determination of their correct order. Eighteen EcoRI- MseI primer combinations were screened for polymorphism and yielded 148 polymorphic bands out of a total of 1180. The level of polymorphism among the different primer combinations varied from 5.7% to 33.3%. Eight primer combinations, which revealed most polymorphisms, were further analysed in all individuals of the F2 mapping population. Seventy-one out of 80 polymorphic loci could be integrated into the linkage map, thereby increasing the total number of markers to 182. However, 46% of the mapped AFLP markers constituted four major clusters located on chromosomes 2R, 5R and 7R, predominantly in proximity to the centromere. The integration of AFLP markers caused an increase of 215 cM, which resulted in a total map length of almost 1100 cM. [source]


    Genetic and phenotypic differences between thistle populations in response to habitat and weed management practices

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2010
    RICCARDO BOMMARCO
    Rapid evolutionary change is increasingly being recognized as commonplace, but the evolutionary consequences for species and ecosystems under human-induced selection regimes have not been explored in detail, although many species occur in such environments. In a common garden experiment and with amplified fragment length polymorphism markers, we examined whether genetic differentiation has taken place between spatially intermixed populations of creeping thistles Cirsium arvense (Asteraceae) collected from a natural habitat (maritime shores), a semi-natural habitat (road verges) and arable fields under two management regimes: conventional and organic farming. Populations of C. arvense have altered genetically and locally adapted their growth patterns with changed land use. Although plants from different habitats showed similar total biomass production, shoot and root production was higher for maritime populations, suggesting selection for increased competitive ability. Competitive ability then declined in the order semi-natural, conventional farms and organic farms. Thistles in arable fields may be more selected for tolerance against disturbances from herbicides and mechanical weed control. In addition, early shoot sprouting and genetic analysis showed differentiation between plants originating from conventional farms and farms that were converted to organic 9,30 years ago, suggesting some adaptation to altered crop cultivation practices. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 797,807. [source]