Laurentide Ice Sheet (laurentide + ice_sheet)

Distribution by Scientific Domains


Selected Abstracts


Recharge and Preservation of Laurentide Glacial Melt Water in the Canadian Shield

GROUND WATER, Issue 5 2000
Ian D. Clark
Ground water inflows to drifts ranging from 700 to 1615 m below ground surface at the Con Mine, Yellowknife, Northwest Territories, Canada, were used to study deep hydrogeological flow regimes in Shield terrain. Salinity trends are due to mixing between low-TDS ground water and deep Ca(Na)-C1 brines (>290 g/L) likely derived from Devonian sea water. C1 - ,,18O relationships demonstrate that all inflows are a mixture of three distinct components: modern meteoric ground water (,18O ,,18.9 ± 0.1%o), brine (,18O ,,10%o), and an isotopically depleted water (,18O ,,28%o). The origin of this third endmember is attributed to glacial melt water injected into the subsurface during ablation of the Laurentide Ice Sheet at ca. 10 ka. A mechanism is proposed where high hydrostatic pressure in the ablation zone imposes strong downward gradients beneath the ice sheet margin. Numerical simulation with the SWIFT II finite-difference code recreates the observed salinity gradients within a modeled 50-year interval, corresponding with the rate of retreat of the ice sheet across the landscape at this time. The persistence of this melt water in the subsurface for some 10,000 years following retreat of the ice and decay of the steep hydraulic gradients highlights the importance of gradient, in addition to permeability, as a major control on ground water flow and transport in deep crystalline settings. [source]


The deglaciation of Clyde Inlet, northeastern Baffin Island, Arctic Canada,

JOURNAL OF QUATERNARY SCIENCE, Issue 3 2007
Jason P. Briner
Abstract The behaviour of ice sheets as they retreated from their Last Glacial Maximum (LGM) positions provides insights into Lateglacial and early Holocene ice-sheet dynamics and climate change. The pattern of deglaciation of the Laurentide Ice Sheet (LIS) in arctic fiord landscapes can now be well dated using cosmogenic exposure dating. We use cosmogenic exposure and radiocarbon ages to constrain the deglaciation history of Clyde Inlet, a 120,km long fiord on northeastern Baffin Island. The LIS reached the continental shelf during the LGM, retreated from the coastal lowlands by 12.5,±,0.7,ka (n,=,3), and from the fiord mouth by 11.7,±,2.2,ka (n,=,4). Rapid retreat from the outer fiord occurred 10.3,±,1.3,ka (n,=,6), with the terminus reaching the inner fiord shortly after 9.4,ka (n,=,2), where several moraine systems were deposited between ca. 9.4 and ca. 8.4,ka. These moraines represent fluctuations of the LIS during the warmest summers since the last interglaciation, and this suggests that the ice sheet was responding to increased snowfall. Before retreating from the head of Clyde Inlet, the LIS margin fluctuated at least twice between ca. 7.9 and ca. 8.5,ka, possibly in response to the 8.2,ka cold event. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Comparative phylogeography of unglaciated eastern North America

MOLECULAR ECOLOGY, Issue 14 2006
DOUGLAS E. SOLTIS
Abstract Regional phylogeographical studies involving co-distributed animal and plant species have been conducted for several areas, most notably for Europe and the Pacific Northwest of North America. Until recently, phylogeographical studies in unglaciated eastern North America have been largely limited to animals. As more studies emerge for diverse lineages (including plants), it seems timely to assess the phylogeography across this region: (i) comparing and contrasting the patterns seen in plants and animals; (ii) assessing the extent of pseudocongruence; and (iii) discussing the potential applications of regional phylogeography to issues in ecology, such as response to climatic change. Unglaciated eastern North America is a large, geologically and topographically complex area with the species examined having diverse distributions. Nonetheless, some recurrent patterns emerge: (i) maritime , Atlantic vs. Gulf Coast; (ii) Apalachicola River discontinuity; (iii) Tombigbee River discontinuity; (iv) the Appalachian Mountain discontinuity; (v) the Mississippi River discontinuity; and (vi) the Apalachicola River and Mississippi River discontinuities. Although initially documented in animals, most of these patterns are also apparent in plants, providing support for phylogeographical generalizations. These patterns may generally be attributable to isolation and differentiation during Pleistocene glaciation, but in some cases may be older (Pliocene). Molecular studies sometimes agree with longstanding hypotheses of glacial refugia, but also suggest additional possible refugia, such as the southern Appalachian Mountains and areas close to the Laurentide Ice Sheet. Many species exhibit distinct patterns that reflect the unique, rather than the shared, aspects of species' phylogeographical histories. Furthermore, similar modern phylogeographical patterns can result from different underlying causal factors operating at different times (i.e. pseudocongruence). One underemphasized component of pseudocongruence may result from the efforts of researchers to categorize patterns visually , similar patterns may, in fact, not fully coincide, and inferring agreement may obscure the actual patterns and lead to erroneous conclusions. Our modelling analyses indicate no clear spatial patterning and support the hypothesis that phylogeographical structure in diverse temperate taxa is complex and was not shaped by just a few barriers. [source]


Climatic and geomorphic factors affecting contemporary (1950,2004) activity of retrogressive thaw slumps on the Aklavik Plateau, Richardson Mountains, NWT, Canada

PERMAFROST AND PERIGLACIAL PROCESSES, Issue 1 2010
Denis Lacelle
Abstract The climatic and geomorphic factors affecting retrogressive thaw slump initiation and activity on the Aklavik Plateau (Richardson Mountains, NWT) were examined using historical air photographs over a 54-year period (1950 to 2004). In this region, thaw slumps include a near-vertical headwall, a floor of low gradient (2,10°) and a steeply sloping evacuation channel (15,25°) that connects the floor of the thaw slumps to Willow River located 60,150,m below. All thaw slumps on the Aklavik Plateau are located within the glacial limit of the Laurentide Ice Sheet and the majority developed on the western side of the valley on gently sloping terrain. Aerial photographic analysis showed an increase in thaw slump initiation from 0.35 new thaw slump yr,1 over the 1954,71 period to 0.68 new thaw slump yr,1 over the 1985,2004 period. This increase follows the pattern of the 10-year running mean summer air temperature record over the 1950,2004 period. However, the total number of active mature thaw slumps on the Aklavik Plateau decreased from a maximum of 46 in 1950 to a minimum of 24 observed in 2004, which follows, to a certain extent, the 10-year running average of rainfall. Both these trends may relate to the influence of climate on the erosional processes that are thought to initiate thaw slumps and keep them active in regions of highlands. Copyright © 2009 John Wiley & Sons, Ltd. and Her Majesty the Queen in right of Canada. [source]


Cryogenic sediment-filled wedges, northern Delaware, USA

PERMAFROST AND PERIGLACIAL PROCESSES, Issue 4 2004
Mary D. Lemcke
Abstract Wedge-like sedimentary structures at two sites in northern Delaware USA are located at the erosional surface of, and extend into, channel deposits of the fluvial, mid-Pleistocene Columbia Formation. The wedges are 0.25,0.60,m wide at the top, 1.0,1.5,m in vertical extent, contain moderate to poorly sorted, and vertically-stratified sediment, and are overlain unconformably by a layer of wind-blown silt. Several hypotheses for the formation and infill of the wedges were evaluated using detailed physical, stratigraphic, and sedimentological information. The most likely explanation for the features is that they are relict cryogenic structures formed by thermal-contraction cracking in permafrost, and filled with wind-blown sediments derived from the Columbia Formation. The wedges are believed to have formed in the tundra environment that existed in northern Delaware, south of the Laurentide Ice Sheet, during the coldest parts of the Wisconsinan glaciation. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Stratigraphy and sedimentation of the stratotype sections of the Catfish Creek Drift Formation between Bradtville and Plum Point, north shore, Lake Erie, southwestern Ontario, Canada

BOREAS, Issue 2 2005
ALEKSIS DREIMANIS
Dreimanis, A. & Gibbard, P. 2005 (May): Stratigraphy and sedimentation of the stratotype sections of the Catfish Creek Drift Formation between Bradtville and Plum Point, north shore, Lake Erie, southwestern Ontario, Canada. Boreas, Vol. 34, pp. 101,122. Oslo. ISSN 0300,9483. The Catfish Creek Drift Formation is a significant and extensive lithostratigraphical marker unit in SW Ontario. Here the stratotype, exposed in the Lake Erie bluffs of the Plum Point-Bradtville (Grandview) area south of London, Ontario, Canada, is proposed. It consists of subglacial and proglacial sediments deposited at the beginning of the Nissouri Phase of the Wisconsinan glaciation. In the 2.5-km-long stratotype section, the Catfish Creek Drift consists of 9 members. Five of them, the Dunwich and Grandview I-IV members, mainly consist of till, with minor components of stratified drift. The Dunwich till was deposited by the Huron-Georgian Bay lobe, but the Grandview I-IV tills by the Erie lobe. The Zettler Farm Member consists of co-lobal till in the central part of the section and of a proglacial waterlain flow diamicton and a subglacial undermelt diamicton in the SW part. Three members consist entirely of stratified drift; the glaciolacustrine silty and clayey Waite Farm Member, the ice-marginal deltaic Oosprink Farm Member and the Boy Scout Camp Member , deposited by meltwater streams in subglacial channels. The sequence of interbedded till and stratified drift represents the oscillating advance of the Laurentide Ice Sheet in the Lake Erie basin. [source]


Modeling the deglaciation of the Green Bay Lobe of the southern Laurentide Ice Sheet

BOREAS, Issue 1 2004
CORNELIA WINGUTH
We use a time-dependent two-dimensional ice-flow model to explore the development of the Green Bay Lobe, an outlet glacier of the southern Laurentide Ice Sheet, leading up to the time of maximum ice extent and during subsequent deglaciation (c. 30 to 8 cal. ka BP). We focus on conditions at the ice-bed interface in order to evaluate their possible impact on glacial landscape evolution. Air temperatures for model input have been reconstructed using the GRIP ,8O record calibrated to speleothem records from Missouri that cover the time periods of c. 65 to 30 cal. ka BP and 13.25 to 12.4 cal. ka BP. Using that input, the known ice extents during maximum glaciation and early deglaciation can be reproduced reasonably well. The model fails, however, to reproduce short-term ice margin retreat and readvance events during later stages of deglaciation. Model results indicate that the area exposed after the retreat of the Green Bay Lobe was characterized by permafrost until at least 14 cal. ka BP. The extensive drumlin zones that formed behind the ice margins of the outermost Johnstown phase and the later Green Lake phase are associated with modeled ice margins that were stable for at least 1000 years, high basal shear stresses (c. 100 kPa) and permafrost depths of 80,200 m. During deglaciation, basal meltwater and sliding became more important. [source]


Geoarchaeology and late glacial landscapes in the western lake superior region, Central North America

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2007
Christopher L. Hill
The transition from full glacial to interglacial conditions along the southern margin of the Laurentide ice sheet resulted in dramatic changes in landscapes and biotic habitats. Strata and landforms resulting from the Wisconsin Episode of glaciation in the area directly west of Lake Superior indicate a context for late Pleistocene biota (including human populations) connected to ice margins, proglacial lakes, and postglacial drainage systems. Late Glacial landscape features that have the potential for revealing the presence of Paleoindian artifacts include abandoned shorelines of proglacial lakes in the Superior and Agassiz basins and interior drainages on deglaciated terrains. The linkage between Late Pleistocene human populations and Rancholabrean fauna has yet to be demonstrated in the western Lake Superior region, although isolated remains of mammoth ( Mammuthus) have been documented, as well as fluted points assigned to Clovis, Folsom, and Holcombe-like artifact forms. Agate Basin and Hell Gap (Plano-type) artifacts also imply the presence of human groups in Late Glacial landscapes associated with the Agassiz and Superior basins. © 2007 Wiley Periodicals, Inc. [source]


Harlequin duck Histrionicus histrionicus population structure in eastern Nearctic

JOURNAL OF AVIAN BIOLOGY, Issue 2 2002
Serge Brodeur
During May 1996 and April 1997, eight harlequin duck males were captured and fitted with satellite transmitters while migrating along the shores of Forillon National Park, Québec, Canada. Another 17 males were equipped with satellite transmitters in river systems of eastern Hudson Bay, Ungava Bay and northern Labrador in June 1997 and 1998. Our objectives were to determine relationships between breeding, moulting and wintering areas, and to determine whether distinct population segments existed among harlequin ducks in eastern North America. All birds tracked from Forillon migrated to Labrador. Moulting areas were identified for six birds. Forillon males were followed to the eastern North American major wintering site in Maine. Males captured in northern Québec and Labrador migrated to moult and winter in south-western Greenland. Our data suggest the presence of two demographically distinct population segments in eastern North America, perhaps originating from the Pleistocene glacial refuge in western Greenland and south of the Laurentide ice sheet in eastern Canada or United States. [source]


Late Quaternary upwelling off tropical NW Africa: new micropalaeontological evidence from ODP Hole 658C,

JOURNAL OF QUATERNARY SCIENCE, Issue 3 2006
Simon K. Haslett
Abstract Planktonic foraminifera and radiolaria have been analysed in a Late Quaternary (40,0,ka) sediment sequence from Ocean Drilling Program (ODP) Hole 658C located under a coastal upwelling system near Cap Blanc, offshore northwest Africa, in order to document the palaeoceanographic history of the area. Temporal variations in species abundance and faunal assemblage analysis reveal a tripartite phased sequence of palaeoceanographic change through the Late Quaternary. Phase 1 spans 40,14.5,ka and is characterised by moderate upwelling, but Heinrich event 2 is distinguished as a brief episode of strengthened upwelling. Phase 2 begins with a change in a number of variables at ca. 14.5,ka and extends to ca. 5.5,ka. This phase is characterised by a general strengthening of upwelling, but may be subdivided into three minor phases including (a) the recognition of the Younger Dryas, marked by a temporary reduction in upwelling strength, followed by (b) an intensification of upwelling, and (c) upwelling and high productivity between 8 and 5.5,ka. This phase of upwelling corresponds with maximum Holocene cooling, possibly triggered by the collapse of the Laurentide ice sheet. Phase 3 extends from 5.5 to 0,ka and is characterised by weak upwelling and significant calcite dissolution. These phases are related to climatic events, particularly the African Humid Period (AHP), which is coincident with Phase 2. The AHP is characterised by increased precipitation, linked to an intensification of the African monsoon that enhances North East Trade Wind-driven coastal upwelling and is associated with the expansion of continental vegetation across North Africa. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Contrasts in the Quaternary of mid-North America and mid-Eurasia: notes on Quaternary landscapes of western Siberia,

JOURNAL OF QUATERNARY SCIENCE, Issue 7-8 2005
H. E. Wright
Abstract The West Siberian Plain was formed by marine deposits that extended from the Mediterranean basin to the arctic. Tectonic action later produced a striking series of long straight NE,SW grabens in the southern part of the plain. Pleistocene advance of the Kara ice sheet onto the continent resulted in blockage of the Ob and Yenisey rivers to form huge proglacial lakes that drained through these grabens south via the Turgay Pass and the Aral, Caspian, Black and Mediterranean seas to the North Atlantic Ocean, but during the Last Glacial Maximum (late Weichselian, isotope stage 2), the Kara ice sheet did not advance onto the continent in northwestern Siberia. The Altai Mountains, which bound the West Siberian Plain on the south, contained large deep intermontane ice-dammed lakes, which drained catastrophically when the ice dams broke, forming giant ripples on the basin floors. Pollen studies of glacial lakes indicate that the Lateglacial steppe vegetation and dry climatic conditions continued into the early Holocene as summer insolation maintained high levels. Permafrost development on a drained lake floor in the western Altai Mountains resulted in the formation of groups of small pingos. In North America the growth and wastage of the huge Laurentide ice sheet had an indirect role in the climatic history of western Siberia during the Glacial and Lateglacial periods, after which the climate was more affected directly by insolation changes, whereas in North America in the early Holocene the insolation factor was coupled with the climatic effects of the slow wastage of the ice sheet, and the time of maximum dryness was postponed until the mid-Holocene. Copyright © 2005 John Wiley & Sons, Ltd. [source]