Latex Production (latex + production)

Distribution by Scientific Domains


Selected Abstracts


Evolution of latex and its constituent defensive chemistry in milkweeds (Asclepias): a phylogenetic test of plant defense escalation

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2008
Anurag A. Agrawal
Abstract A tremendous diversity of plants exude sticky and toxic latex upon tissue damage, and its production has been widely studied as a defensive adaptation against insect herbivores. Here, we address variation in latex production and its constituent chemical properties (cardenolides and cysteine proteases) in 53 milkweeds [Asclepias spp. (Apocynaceae)], employing a phylogenetic approach to test macroevolutionary hypotheses of defense evolution. Species were highly variable for all three traits, and they showed little evidence for strong phylogenetic conservatism. Latex production and the constituent chemical defenses are thus evolutionarily labile and may evolve rapidly. Nonetheless, in phylogenetically independent analyses, we show that the three traits show some correlations (and thus share a correlated evolutionary history), including a positive correlation between latex exudation and cysteine protease activity. Conversely, latex exudation and cysteine protease activity both showed a trade-off with cardenolide concentrations in latex. We also tested whether these traits have increased in their phenotypic values as the milkweeds diversified, as predicted by plant defense escalation theory. Alternative methods of testing this prediction gave conflicting results , there was an overall negative correlation between amount of evolutionary change and amount of latex exudation; however, ancestral state reconstructions indicated that most speciation events were associated with increases in latex. We conclude by (i) summarizing the evidence of milkweed latex itself as a multivariate defense including the amount exuded and toxin concentrations within, (ii) assessing the coordinated evolution of latex traits and how this fits with our previous notion of ,plant defense syndromes', and finally, (iii) proposing a novel hypothesis that includes an ,evolving community of herbivores' that may promote the escalation or decline of particular defensive strategies as plant lineages diversify. [source]


Ecological play in the coevolutionary theatre: genetic and environmental determinants of attack by a specialist weevil on milkweed

JOURNAL OF ECOLOGY, Issue 6 2003
Anurag A. Agrawal
Summary 1We studied the genetic and environmental determinants of attack by the specialist stem-attacking weevil, Rhyssomatus lineaticollis on Asclepias syriaca. 2In natural populations, the extent of stem damage and oviposition were positively correlated with stem width, but not stem height. We hypothesized that both genotypic and environmental factors influencing stem morphology would affect attack by weevils. 3In a common garden study with 21 full-sib families of milkweed, both phenotypic and genetic correlations indicated that weevils impose more damage and lay more eggs on thicker stemmed plants. 4Of three other putative resistance traits, only latex production showed a negative genetic correlation with weevil attack. 5When neighbouring grasses were clipped to reduce light competition, focal milkweed plants received up to 2.6 times the photosynthetically active radiation and 1.6 times the red to far red ratio of light compared with plants with intact grass neighbours. Focal milkweed plants were therefore released from the classic neighbour avoidance response and had 20% shorter internode lengths, were 30% shorter, and had 90% thicker stems compared with controls. 6Clipping of grass neighbours resulted in nearly 2.7 times the damage and oviposition by stem weevils, thus supporting the hypothesis of an environmental or trait-mediated indirect influence on resistance. 7Although attack of plants by weevils strongly increases the probability of stem mortality, thicker stems experience lower mortality, thus counteracting the selective impact of weevil-induced plant mortality. 8The determinants of attack on milkweeds include both genetic variation for stem thickness and an indirect environmental influence of plant neighbours. If milkweeds and weevils are coevolving, the interaction is diffuse because the ecological neighbourhood is likely to modify the patterns of reciprocal natural selection. [source]


Recent advances in controlled/living radical polymerization in emulsion and dispersion

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2008
Jung Kwon Oh
Abstract Effective ways to conduct controlled/living radical polymerization (CRP) in emulsion systems are necessary for commercial latex production without significant modification of current industrial facilities. Conducting CRP in emulsion media is more complicated and more challenging than its application in homogeneous bulk. These challenges come from the intrinsic kinetics of emulsion polymerization. They include mass transport, slow chain growth mechanism, and exit of short radicals from polymeric particles. This review describes the recent developments of CRP in heterogeneous dispersion, including miniemulsion, microemulsion, dispersion, and especially emulsion. Various approaches for conducting emulsion CRP are detailed, including controlled seeded emulsion polymerization, nanoprecipitation, use of short oligomers as macroinitiators for in situ block copolymerization, and RAFT-mediated self-assembly. In addition many remaining challenges of the current methods barring wide spread industrial application of emulsion CRP are also suggested. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6983,7001, 2008 [source]