Latent Membrane (latent + membrane)

Distribution by Scientific Domains

Terms modified by Latent Membrane

  • latent membrane protein

  • Selected Abstracts


    Overexpression of inducible nitric oxide synthase and accumulation of 8-OHdG in nasopharyngeal carcinoma

    HISTOPATHOLOGY, Issue 2 2008
    Y Segawa
    Aims:, Nitric oxide (NO), produced by inducible NO synthase (iNOS), has been suggested to cause oxidative stress, leading to 8-hydroxydeoxyguanosine (8-OHdG) accumulation and subsequent transversion mutation of DNA. The aim was to evaluate iNOS expression and the status of oxidative stress in nasopharyngeal carcinoma (NPC). Methods and results:, Seventy-three cases of NPC were investigated to examine the immunohistochemical expression of iNOS, 8-OHdG and latent membrane protein-1 (LMP-1) and Epstein,Barr virus-encoded small RNA (EBER) expression using in situ hybridization. iNOS mRNA expression and p53 gene mutations were also assessed. Overexpression of iNOS, LMP-1 and EBER was observed in 62 (84.9%), 28 (38.4%) and 53 (72.6%) cases respectively. p53 gene mutation was found in 10 of 73 (13.7%) cases. Immunohistochemical iNOS expression was associated with the 8-OHdG labelling index, iNOS mRNA expression and p53 gene alteration (P < 0.0001, P = 0.016 and 0.0082 respectively). Conclusions:, Our present findings suggest that the expression of iNOS induces oxidative stress in NPC. Although the presence of p53 mutation was associated with iNOS overexpression, the type of acid,base change of p53 was transition, but not transversion, which suggests that the p53 gene is not the direct target of DNA damage by 8-OHdG accumulation. [source]


    A clonal cutaneous CD30+ lymphoproliferative eruption in a patient with evidence of past exposure to hepatitis E

    INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 7 2000
    Freddye M. Lemons-Estes CDR, MC USN
    The patient was a 52-year-old white man who had worked in remote areas of the world during the past 2 years, including an extended period in rural areas of Central Africa and in Central and South America. He had no acute illnesses during the 2-year period except for rare, mild, upper respiratory tract infections. For approximately 1 year, however, he had developed recurrent, papular-vesicular, slightly painful lesions on the fingers and palms, that spontaneously healed over weeks to months ( Fig. 1). The patient had no other concurrent illnesses and no abnormal laboratory findings, except for positive enzyme-linked immunoabsorbent assay (ELISA) for immunoglobulin G (IgG) antibodies for hepatitis E virus (HEV) using a recombinant expressed HEV antigen (Genelabs Technologies, Inc., San Antonio). Prolonged treatment with minocycline did not appear to moderate the lesions. At approximately 2.5 years after the development of his first cutaneous lesion, however, the patient reported that he had had no new lesions for over 3 months. Figure 1. Vesicular ,lesion on the finger which regressed over a period of weeks A biopsy specimen showed an intraepidermal vesicle with prominent epidermal necrosis and reticular degeneration ( Fig. 2). Within the epidermis, there was a dense infiltrate of lymphoid cells. The majority of these cells were pleomorphic with prominent nucleoli and frequent mitotic figures ( Fig. 3). Sheets of atypical cells were found in the subjacent dermis. The infiltrate extended down into the reticular dermis. With extension into the dermis, the infiltrate became more polymorphous with more small lymphoid cells, large numbers of eosinophils, and some plasma cells located more deeply. Figure 2. Intraepidermal ,blister showing reticular degeneration and marked epidermotrophism of large atypical cells with extension into the dermis with a mixed infiltrate containing eosinophils and plasma cells (30×) Figure 3. Intraepidermal ,infiltrate of large atypical cells with extension into the dermis with a mixed infiltrate containing eosinophils and plasma cells (400×) Immunohistochemical stains for CD3 (DAKO), CD4 (Becton Dickinson), CD8 (Becton Dickinson), CD15 (LeuM1, Becton Dickinson), CD20 (L-26, DAKO), CD30 (Ber-H2, DAKO), CD45RO (UCHL1, DAKO), S-100 protein (DAKO), T-cell intracellular antigen (TIA) (Coulter), epithelial membrane antigen (EMA) (DAKO), KP-1 (CD68, DAKO), MAC-387 (DAKO), Epstein,Barr virus (EBV) latent membrane antigen-1 (LMP-1, DAKO), and EBV-encoded nuclear antigen 2 (EBNA2, DAKO) were performed on formalin-fixed tissue using the ABC method with DABA as the chromagen. CD3 showed diffuse membrane staining of the large atypical lymphoid cells, as well as the majority of the small lymphoid cells ( Fig. 4). CD4 showed positive membrane staining of the large atypical lymphoid cells and the majority of the small lymphoid cells. CD8 showed only scattered light membrane staining of small lymphoid cells. CD15 was negative, and CD20 showed foci of groups of small lymphoid cells mainly within the reticular dermis. CD30 showed positive membrane and paranuclear staining of the large atypical cells, most abundant within the epidermis and papillary dermis ( Fig. 5). CD45RO showed positive membrane staining of the large atypical cells and the majority of the small lymphoid cells. S-100 protein showed increased dendritic cells within the surrounding viable epidermis and the subjacent papillary dermis ( Fig. 6). TIA showed granular staining in the large atypical lymphoid cells and only rare staining in small lymphoid cells ( Fig. 7). EMA staining was essentially negative. KP-1 showed only scattered positive cells mainly in the lower papillary and the reticular dermis. MAC-387 showed membrane staining in the viable epidermis ( Fig. 8). LMP-1 and EBNA2 for EBV were negative within the lymphoid cells as well as within the overlying epidermis. Figure 4. Immunohistochemical ,staining for CD3 showing diffuse staining of lymphoid cells within the epidermis and dermis (150×) Figure 5. Immunohistochemical ,staining for CD30 showing membrane and paranuclear staining of large atypical lymphoid cells within the epidermis and papillary dermis (a, 150× b, 400×) Figure 6. Immunohistochemical ,staining for S-100 protein within the epidermis and in the papillary dermis (a, 150× b, 300×) Figure 7. Immunohistochemical ,granular staining of large atypical lymphoid cells for TIA (200×) Figure 8. Immunohistochemical ,staining for MAC-387 showing epidermal staining (100×) Gene rearrangement studies showed a ,-T-cell receptor gene rearrangement. The monoclonal band was detected with VJ1, VJ2, and D1J2 primer sets. The T-cell receptor , rearrangement assay has a sensitivity of 61% and a specificity of 94% for the detection of a monoclonal rearrangement in T-cell lymphomas for which amplifiable DNA can be recovered. Electron microscopy was performed on formalin-fixed material, positive-fixed with 2.5% phosphate-buffered glutaraldehyde and further with 1% osmium tetroxide by standard techniques. Intracellular, 50,60-nm, cytoplasmic, spherical, viral-like particles were identified ( Fig. 9). Figure 9. Electron ,microscopy showing 50,60-nm diameter, intracellular, viral-like particles (arrows) (70,000×) [source]


    Apoptosis of Hodgkin,Reed,Sternberg cells in classical Hodgkin lymphoma revisited

    APMIS, Issue 5 2010
    DANIEL BENHARROCH
    Benharroch D, Einav I, Feldman A, Levy A, Ariad S, Gopas J. Apoptosis of Hodgkin,Reed,Sternberg cells in classical Hodgkin lymphoma revisited. APMIS 2010; 118: 339,45. We scrutinized the role of apoptosis of the Hodgkin,Reed,Sternberg (HRS) cells in classical Hodgkin lymphoma (cHL) and critically reviewed its features in the light of conflicting evidence. In this study, we found that tumor cells in this neoplasm showed inhibition of apoptosis in 55% of the 217 cHL cases only. It is also suggested that the two factors considered responsible for apoptosis inhibition in HRS cells, nuclear factor-,B and the latent membrane protein-1 of the Epstein,Barr virus, do not correlate with apoptosis inhibition, in contrast with the findings in the consensual pathogenetic scheme. The most significant association of HRS cell apoptosis was with p53, the negative expression of which related with a high apoptotic index (p = 0.001). These findings support our contention that the role of apoptosis in the HRS cells of Hodgkin lymphoma has not been completely elucidated and is at variance with that in the consensus. [source]


    Pathogenesis and mechanism of disease progression from hemophagocytic lymphohistiocytosis to Epstein,Barr virus-associated T-cell lymphoma: Nuclear factor-,B pathway as a potential therapeutic target

    CANCER SCIENCE, Issue 9 2007
    Huai-Chia Chuang
    Epstein,Barr virus (EBV) can infect T lymphocytes and manifests as hemophagocytic lymphohistiocytosis (HLH), a distinct entity of hemophagocytic syndrome (HPS) characterized by fever, hepatosplenomegaly, cytopenia, hypercytokinemia, and systemic macrophage activation with hemophagocytosis. In a substantial percentage of HLH patients, the disease may relapse or progress to T-cell lymphoma in months to years. In the present review, the authors summarize the previous studies on the pathogenesis of HLH and the potential mechanism for the progression of disease from HLH to T-cell lymphoma. The infection of T cells by EBV could activate T cells to secrete proinflammatory cytokines, particularly tumor necrosis factor-, (TNF-,), which subsequently activate macrophages. EBV latent membrane protein-1 (LMP-1) is the viral product responsible for the activation of the TNF receptor (TNFR) associated factors/nuclear factor-,B (NF-,B)/ERK pathway to enhance cytokine secretion mediated through the suppression of the SAP/SH2D1A gene. The activation of NF-,B will confer resistance to TNF-,-induced apoptosis on EBV-infected T cells through the down-regulation of TNFR-1. Consistent with in vitro observations, EBV-associated T or natural killer/T-cell lymphoma showed constitutive activation of NF-,B, explaining its drug resistance, hypercytokinemia, and poor prognosis. Therefore, similar to other inflammation-associated cancers, HLH provides a unique model to study the mechanism of disease progression from a benign virus-infected disorder (HLH) to T-cell lymphoma. Inhibition of the NF-,B signal pathway should provide a potential target for the treatment of HLH and EBV-associated T-cell lymphoma. (Cancer Sci 2007; 98: 1281,1287) [source]