Home About us Contact | |||
Large River Basins (large + river_basin)
Selected AbstractsHydrological impacts of forest conversion to agriculture in a large river basin in northeast ThailandHYDROLOGICAL PROCESSES, Issue 14 2001J. Wilk Abstract Small-scale experiments have demonstrated that forest clearance leads to an increase in water yield, but it is unclear if this result holds for larger river basins (>1000 km2). No widespread changes in rainfall totals and patterns were found in the 12 100 km2 Nam Pong catchment in northeast Thailand between 1957 and 1995, despite a reduction in the area classified as forest from 80% to 27% in the last three decades. Neither were any detectable changes found in any other water balance terms nor in the dynamics of the recession at the end of the rainy season. When a hydrological model calibrated against data from the period before the deforestation was applied for the last years of the study period (1987,1995), runoff generation was however underestimated by approximately 15%, indicating increased runoff generation after the deforestation. However, this was mainly due to the hydrological response during one single year in the first period, when the Q/P ratio was very low. When excluding this year, neither analysis based on the hydrological model could reveal any significant change of the water balance due to the deforestation. More detailed land-use analysis revealed that shade trees were left on agricultural plots as well as a number of abandoned areas where secondary growth can be expected, which is believed to account for the results. Copyright © 2001 John Wiley & Sons, Ltd. [source] A BTOP model to extend TOPMODEL for distributed hydrological simulation of large basinsHYDROLOGICAL PROCESSES, Issue 17 2008Kuniyoshi Takeuchi Abstract Topography is a dominant factor in hillslope hydrology. TOPMODEL, which uses a topographical index derived from a simplified steady state assumption of mass balance and empirical equations of motion over a hillslope, has many advantages in this respect. Its use has been demonstrated in many small basins (catchment areas of the order of 2,500 km2) but not in large basins (catchment areas of the order of 10 000,100 000 km2). The objective of this paper is to introduce the Block-wise TOPMODEL (BTOP) as an extension of the TOPMODEL concept in a grid based framework for distributed hydrological simulation of large river basins. This extension was made by redefining the topographical index by using an effective contributing area af(a) (0,f(a),1) per unit grid cell area instead of the upstream catchment area per unit contour length and introducing a concept of mean groundwater travel distance. Further the transmissivity parameter T0 was replaced by a groundwater dischargeability D which can provide a link between hill slope hydrology and macro hydrology. The BTOP model uses all the original TOPMODEL equations in their basic form. The BTOP model has been used as the core hydrological module of an integrated distributed hydrological model YHyM with advanced modules of precipitation, evapotranspiration, flow routing etc. Although the model has been successfully applied to many catchments around the world since 1999, there has not been a comprehensive theoretical basis presented in such applications. In this paper, an attempt is made to address this issue highlighted with an example application using the Mekong basin. Copyright © 2007 John Wiley & Sons, Ltd. [source] SWAT2000: current capabilities and research opportunities in applied watershed modellingHYDROLOGICAL PROCESSES, Issue 3 2005J. G. Arnold Abstract SWAT (Soil and Water Assessment Tool) is a conceptual, continuous time model that was developed in the early 1990s to assist water resource managers in assessing the impact of management and climate on water supplies and non-point source pollution in watersheds and large river basins. SWAT is the continuation of over 30 years of model development within the US Department of Agriculture's Agricultural Research Service and was developed to ,scale up' past field-scale models to large river basins. Model components include weather, hydrology, erosion/sedimentation, plant growth, nutrients, pesticides, agricultural management, stream routing and pond/reservoir routing. The latest version, SWAT2000, has several significant enhancements that include: bacteria transport routines; urban routines; Green and Ampt infiltration equation; improved weather generator; ability to read in daily solar radiation, relative humidity, wind speed and potential ET; Muskingum channel routing; and modified dormancy calculations for tropical areas. A complete set of model documentation for equations and algorithms, a user manual describing model inputs and outputs, and an ArcView interface manual are now complete for SWAT2000. The model has been recoded into Fortran 90 with a complete data dictionary, dynamic allocation of arrays and modular subroutines. Current research is focusing on bacteria, riparian zones, pothole topography, forest growth, channel downcutting and widening, and input uncertainty analysis. The model SWAT is meanwhile used in many countries all over the world. Recent developments in European Environmental Policy, such as the adoption of the European Water Framework directive in December 2000, demand tools for integrative river basin management. The model SWAT is applicable for this purpose. It is a flexible model that can be used under a wide range of different environmental conditions, as this special issue will show. The papers compiled here are the result of the first International SWAT Conference held in August 2001 in Rauischholzhausen, Germany. More than 50 participants from 14 countries discussed their modelling experiences with the model development team from the USA. Nineteen selected papers with issues reaching from the newest developments, the evaluation of river basin management, interdisciplinary approaches for river basin management, the impact of land use change, methodical aspects and models derived from SWAT are published in this special issue. Copyright © 2005 John Wiley & Sons, Ltd. [source] A distributed approach for estimating catchment evapotranspiration: comparison of the combination equation and the complementary relationship approachesHYDROLOGICAL PROCESSES, Issue 8 2003Z. X. Xu Abstract In large river basins, there may be considerable variations in both climate and land use across the region. The evapotranspiration that occurs over a basin may be drastically different from one part of the region to another. The potential influence of these variations in evapotranspiration estimated for the catchment is weakened by using a spatially based distributed hydrological model in such a study. Areal evapotranspiration is estimated by means of approaches requiring only meteorological data: the combination equation (CE) model and the complementary relationship approach,the complementary relationship areal evapotranspiration (CRAE) and advection,aridity (AA) models. The capability of three models to estimate the evapotranspiration of catchments with complex topography and land-use classification is investigated, and the models are applied to two catchments with different characteristics and scales for several representative years. Daily, monthly, and annual evapotranspiration are estimated with different accuracy. The result shows that the modified CE model may underestimate the evapotranspiration in some cases. The CRAE and AA models seem to be two kinds of effective alternatives for estimating catchment evapotranspiration. Copyright © 2003 John Wiley & Sons, Ltd. [source] Spatial Calibration and Temporal Validation of Flow for Regional Scale Hydrologic Modeling,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2008C. Santhi Abstract:, Physically based regional scale hydrologic modeling is gaining importance for planning and management of water resources. Calibration and validation of such regional scale model is necessary before applying it for scenario assessment. However, in most regional scale hydrologic modeling, flow validation is performed at the river basin outlet without accounting for spatial variations in hydrological parameters within the subunits. In this study, we calibrated the model to capture the spatial variations in runoff at subwatershed level to assure local water balance, and validated the streamflow at key gaging stations along the river to assure temporal variability. Ohio and Arkansas-White-Red River Basins of the United States were modeled using Soil and Water Assessment Tool (SWAT) for the period from 1961 to 1990. R2 values of average annual runoff at subwatersheds were 0.78 and 0.99 for the Ohio and Arkansas Basins. Observed and simulated annual and monthly streamflow from 1961 to 1990 is used for temporal validation at the gages. R2 values estimated were greater than 0.6. In summary, spatially distributed calibration at subwatersheds and temporal validation at the stream gages accounted for the spatial and temporal hydrological patterns reasonably well in the two river basins. This study highlights the importance of spatially distributed calibration and validation in large river basins. [source] |