Large Pore Volume (large + pore_volume)

Distribution by Scientific Domains


Selected Abstracts


Hierarchical ZnS-In2S3 -CuS Nanospheres with Nanoporous Structure: Facile Synthesis, Growth Mechanism, and Excellent Photocatalytic Activity

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2010
Yingxuan Li
Abstract Without using any templates or surfactants, hierarchical ZnS-In2S3 -CuS nanospheres with nanoporous structure are successfully synthesized via a simple and convenient process. The nanospheres are aggregations of densely packed nanoparticles and nanorods. Different to the oriented attachment (OA) mechanism reported in the literature, the formation of these nanorods is believed to follow a lateral OA mechanism (nanoparticles attach along the direction perpendicular to the crystallographic axes with lateral planes as the juncture) based on the experimental data. This process could be a general phenomenon and would provide a new insight into the OA mechanism. A detailed time-resolved TEM kinetic study of the formation of the complex structure is shown. The dipole mechanism and electric field-induced growth are found to be responsible for the final architecture. Photocatalytic activities for water splitting are investigated under visible-light irradiation (, > 400 nm) and an especially high photocatalytic activity (apparent yield of 22.6% at 420 nm) is achieved by unloaded ZnIn0.25Cu0.02S1.395 prepared at 180 °C for 18 h because of their high crystallinity, large pore volume, and the presence of nanorods with special microstructures. [source]


Multiple Functionalization of Mesoporous Silica in One-Pot: Direct Synthesis of Aluminum-Containing Plugged SBA-15 from Aqueous Nitrate Solutions,

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2008
Y. Wu
Abstract Aluminum-containing plugged mesoporous silica has been successfully prepared in an aqueous solution that contains triblock copolymer templates, nitrates, and silica sources but without using mineral acid. The acidity of the solution can be finely tuned from pH 1.4 to 2.8 according to the amount of the introduced aluminum species which ranged from an Al/Si molar ratio of 0.25/1 to 4.0/1. The aluminum nitrate additive in the starting mixture, along with the weak acidity produced by the nitrates, contributes to the formation of plugged hexagonal structures and the introduction of different amounts of aluminum species into the mesostructure. Characterization by X-ray diffraction, transmission electron microscopy, and N2 sorption measurements show that the Al-containing plugged silicas possess well-ordered hexagonal mesostructures with high surface areas (700,860 m2,g,1), large pore volume (0.77,1.05 cm3,g,1) and, more importantly, combined micropores and/or small mesopores in the cylindrical channels. Inductively coupled plasma,atomic emission spectrometry results show that 0.7,3.0 wt,% aluminum can be introduced into the final samples. 27Al MAS NMR results display that about 43,60% aluminum species are incorporated into the skeleton of the Al-containing silicas and the amount of the framework aluminum increases as the initial added nitrates rises. Scanning electron microscopy images reveal that the directly synthesized Al-containing plugged silica has a similar morphology to that of traditional SBA-15. Furthermore, the Al-containing plugged samples have excellent performances in the adsorption and the catalytic decomposition of isopropyl alcohol and nitrosamine. Finally, the direct synthesis method is used to produce plugged mesoporous silicas that contain other metals such as chromium and copper, and the resultant samples also show good catalytic activities. [source]


Kinetic behaviour of the adsorption and photocatalytic degradation of salicylic acid in aqueous TiO2 microsphere suspension

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2004
XZ Li
Abstract A new photocatalyst, named TiO2 microspheres, prepared by a sol-spraying-calcination method, can freely suspend with air bubbling in its aqueous suspension and easily settle down from a water phase under gravity. The experimental results demonstrated that TiO2 microspheres had better adsorption capacity than conventional TiO2 powders, due to large surface area, large pore volume, and also a porous structure. The photocatalytic activity of TiO2 microspheres in aqueous suspension was evaluated using salicylic acid (SA) as a model substrate. It was found that the Langmuir,Hinshelwood model in its integral form described the kinetics of SA photocatalytic degradation in the TiO2 microsphere suspensions better than its simplified form as a first-order reaction model, since the significant substrate adsorption on the catalysts was not negligible. The kinetics of SA photocatalytic degradation with different initial concentrations and pH was further investigated. The experiments demonstrated that the change of pH could significantly affect the adsorption of SA in the TiO2 microsphere suspensions. The effects of substrate adsorption rate and photoreaction rate on the overall performance of photocatalytic degradation is also discussed on the basis of experimental data. Copyright © 2004 Society of Chemical Industry [source]


TiO2 -Modified Macroporous Silica Foams for Advanced Enrichment of Multi-Phosphorylated Peptides

CHEMISTRY - A EUROPEAN JOURNAL, Issue 11 2009
Jingjing Wan
Abstract Enriching peptides: Novel TiO2 -modified macroporous materials (Ti-MOSF, see figure) have been synthesized with high surface area, large pore volume, and functional surfaces that are rich in coordinatively unsaturated TiIV species, which can be applied in the specific extraction of phosphopeptides and which show a preferential capture of multi-phosphorylated peptides with low detection limits and high selectivity. [source]