Home About us Contact | |||
Large Male Size (large + male_size)
Selected AbstractsMale-biased size dimorphism in ichneumonine wasps (Hymenoptera: Ichneumonidae) , the role of sexual selection for large male sizeECOLOGICAL ENTOMOLOGY, Issue 3 2005Tiit Teder Abstract., 1.,Sexual differences in body size are expected to evolve when selection on female and male sizes favours different optima. 2.,Insects have typically female-biased size dimorphism that is usually explained by the strong fecundity advantage of larger size in females. However, numerous exceptions to this general pattern have led to the search for selective pressures favouring larger size in males. 3.,In this study, the benefits of large size were investigated in males of four species of ichneumonine wasps, a species-rich group of parasitoids, many representatives of which exhibit male-biased size dimorphism. 4.,Mating behaviour of all ichneumonine wasps are characterised by pre-copulatory struggles, in the course of which males attempt to override female reluctance to mate. A series of laboratory trials was conducted to study the determinants of male mating success. 5.,A tendency was found for larger males as well as those in better condition to be more successful in achieving copulations. Size dimorphism of the species studied, mostly male-biased in hind tibia length but female-biased in body weight, indicates that sexual selection in males favours longer bodies and appendages rather than larger weight. 6.,The qualitative similarity of the mating patterns suggests that sexual selection cannot completely explain the considerable among-species differences in sexual size dimorphism. 7.,The present study cautions against using various size indices as equivalents for calculating sexual size dimorphism. 8.,It is suggested that female reluctance in ichneumonine wasps functions as a mechanism of female mate assessment. [source] NUPTIAL GIFTS AND THE EVOLUTION OF MALE BODY SIZEEVOLUTION, Issue 3 2002Kenneth M. Fedorka Abstract In many insect systems, males donate nuptial gifts to insure an effective copulation or as a form of paternal investment. However, if gift magnitude is both body size-limited and positively related to fitness, then the opportunity exists for the gift to promote the evolution of large male size. In the striped ground cricket, Allonemobius socius, males transfer a body size-limited, somatic nuptial gift that is comprised primarily of hemolymph. To address the implications of this gift on male size evolution, we quantified the intensity and direction of natural (fecundity) and sexual (mating success) selection over multiple generations. We found that male size was under strong positive sexual selection throughout the breeding season. This pattern of selection was similar in successive generations spanning multiple years. Male size was also under strong natural selection, with the largest males siring the most offspring. However, multivariate selection gradients indicated that gift size, and not male size, was the best predictor of female fecundity. In other words, direct fecundity selection for larger gifts placed indirect positive selection on male body size, supporting the hypothesis that nuptial gifts can influence the evolution of male body size in this system. Although female size was also under strong selection due to a size related fecundity advantage, it did not exceed selection on male size. The implications of these results with regard to the maintenance of the female-biased size dimorphic system are discussed. [source] Evolution of sexual size monomorphism: the influence of passive mate guardingJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 7 2009A. E. DUNHAM Abstract Some species have potential for intense mate competition yet exhibit little or no sexual size dimorphism, despite predictions from sexual selection theory. Using a conceptual model, we show the conditions for which passive mate guarding with copulatory plugs can be an alternative and more successful strategy to active (direct) guarding, reducing selection pressure on large male size. The model predicts that copulatory plugs in mammals should be favoured in species for which females have short sexual receptivity periods. Using data on 62 primate species and a phylogenetic regression approach, we show that, as predicted, copulatory plugs are negatively associated with degree of sexual dimorphism and females' sexual receptivity length. Penile spines are also significantly associated with plug use and short receptivity periods suggesting a possible offensive role in sperm competition. Results highlight that life-history characteristics, such as sexual receptivity lengths, may alter the costs and benefits of alternative male strategies and thus alter the strength of sexual selection. [source] Selection for a dominant oncogene and large male size as a risk factor for melanoma in the Xiphophorus animal modelMOLECULAR ECOLOGY, Issue 15 2010ANDRÉ A. FERNANDEZ Abstract Adult height is a risk factor in numerous human cancers that involve aberrant receptor tyrosine kinase (RTK) signalling. However, its importance is debated due to conflicting epidemiological studies and the lack of useful in vivo models. In Xiphophorus fishes (Platyfishes/Swordtails), a functional RTK, Xiphophorus melanoma receptor kinase (Xmrk), serves as the dominant oncogene and has been maintained for several million years despite being deleterious and in an extremely unstable genomic region. Here we show that the Xmrk genotype is positively correlated with standard length in male and female wild caught Xiphophorus cortezi sampled throughout their phylogeographic distribution. Histopathology confirms the occurrence of malignant melanomas in both sexes; however, melanoma incidence was extremely male biased. Furthermore, males collected with malignant melanomas in the field were significantly larger than both Xmrk males collected without melanomas and wildtype (Xmrk deficient) males. These results not only provide a novel selective mechanism for the persistence of the germline Xmrk oncogene but also create an innovative avenue of melanoma research within the Xiphophorus fishes. Wildlife cancer in natural systems is a growing concern, therefore, future research investigating life history characteristics associated with certain phenotypes and genotypes that predispose an individual to cancer will be fundamental to increasing our understanding of the evolutionary biology of cancer in nature as well as in humans. [source] |