Home About us Contact | |||
Large Animal Models (large + animal_models)
Selected AbstractsAge-Related Increase in Atrial Fibrillation Induced by Transvenous Catheter-Based Atrial Burst Pacing: An In Vivo Rat Model of Inducible Atrial FibrillationJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2010DONGZHU XU M.D. AF Rat Model Induced by Transvenous Catheter Pacing.,Introduction: Large animal models of atrial fibrillation (AF) are well established, but limited experimental reports exist on small animal models. We sought to develop an in vivo rat model of AF using a transvenous catheter and to evaluate the model's underlying characteristics. Methods and Results: Echocardiogram, surface electrocardiogram (ECG), and atrial effective refractory period (AERP) were recorded at baseline in young (3 months) and middle-aged (9 months) Wistar rats. AF inducibility and duration were measured through transvenous electrode catheter in young (n = 11) and middle-aged rats (n = 11) and middle-aged rats treated with either pilsicainide (1 mg/kg iv, n = 7) or amiodarone (10 mg/kg iv, n = 9). Degrees of interstitial fibrosis and cellular hypertrophy in the atria were assessed histologically. The P-wave duration and AERP were significantly longer and echocardiographic left atrial dimension significantly larger in middle-aged versus young rats. AF was inducible in >90% of all procedures in both untreated rat groups, whereas AF inducibility was reduced by the antiarrhythmic drugs. The AF duration was significantly longer in middle-aged than in young rats and was significantly shortened by treatment with either pilsicainide or amiodarone. Histologic analysis revealed significant increases in atrial interstitial fibrosis and cellular diameter in middle-aged versus young rats. Conclusions: Transvenous catheter-based AF is significantly longer in middle-aged than in young rats and is markedly reduced by treatment with antiarrhythmic drugs. This rat model of AF is simple, reproducible, and reliable for examining pharmacologic effects on AF and studying the process of atrial remodeling.(J Cardiovasc Electrophysiol, Vol. 21, pp. 88,93, January 2010) [source] Efficient hepatocyte engraftment and long-term transgene expression after reversible portal embolization in nonhuman primates,HEPATOLOGY, Issue 3 2009Ibrahim Dagher The feasibility of ex vivo gene therapy as an alternative to liver transplantation for the treatment of liver metabolic diseases needs to be analyzed in large animal models. This approach requires appropriate gene transfer vectors and effective hepatocyte engraftment. Lentiviral vectors have the ability to transduce nondividing differentiated cells, such as hepatocytes, and portal vein occlusion increases hepatocyte engraftment. We investigated whether reversible portal vein embolization combined with ex vivo lentivirus-mediated gene transfer is an effective approach for successful hepatocyte engraftment in nonhuman primates and whether the transgene remains expressed in the long term in transplanted hepatocytes in situ. Simian hepatocytes were isolated after left lobe resection, and the left and right anterior portal branches of animals were embolized with absorbable material. Isolated hepatocytes were labeled with Hoechst dye or transduced in suspension with lentiviruses expressing green fluorescent protein under the control of the human apolipoprotein A-II promoter and transplanted via the inferior mesenteric vein. The whole procedure was well tolerated. The embolized liver was revascularized within 2 weeks. The volume of nonembolized liver increased from 38.7% ± 0.8% before embolization to 55.9% ± 1% after embolization and hepatocytes significantly proliferated (10.5% ± 0.4% on day 3 after embolization). Liver repopulation after transplantation with Hoechst-labeled hepatocytes was 7.4% ± 1.2%. Liver repopulation was 2.1% ± 0.2% with transduced hepatocytes, a proportion similar to that obtained with Hoechst-labeled cells, given that the mean transduction efficacy of simian hepatocyte population was 34%. Transgene expression persisted at 16 weeks after transplantation. Conclusion: We have developed a new approach to improve hepatocyte engraftment and to express a transgene in the long term in nonhuman primates. This strategy could be suitable for clinical applications. (HEPATOLOGY 2009.) [source] Development of a swine model of secondary liver tumor from a genetically induced swine fibroblast cell lineHPB, Issue 3 2008R. Abbas Abstract Aim. Metastatic disease is the most common liver tumor. Although alternative therapies have been developed for non-surgical candidates, those therapies lacked ideal testing prior to clinical application because of a paucity of large animal models. The purpose of the present study was to develop a model for secondary liver tumor in a large animal. Material and methods. Fibroblasts were isolated from swine ear lobules and then transfected with amphotrophic retroviruses encoding human or murine genetic material (hTERT, p53DD, cyclinD-1, CDK4R24C, Myc T58A, RasG12V). Transformed cell lines were finally inoculated subcutaneously (s.c.) into: 1) immunodeficient mice (nude), 2) immunocompetent mice (wild type), 3) immunosuppressed swine (under tacrolimus or corticosteroids), 4) immunocompetent swine, and 5) into the liver and portal circulation of swine under steroid-based immunosuppression. Results. In the murine model, tumor growth was evident in 100% of the nude mice (n=5), with a peak size of 20 mm (15.22±4.5 mm; mean±SD) at the time of sacrifice (3 weeks). Tumor growth was evident in 71% of the wild mice (n=21), with a peak size of 7.8 mm (4.19±1.1 mm) by the third week of growth. In the swine model, tumor growth was evident in 75% (3/4 ears; n=2) of swine under tacrolimus-based immunosuppression versus 50% of swine under steroids-based immunosuppression (n=2). Tumor growth was slow in two animals, while in one animal the tumor was larger with a peak growth of 42 mm at 3 weeks. The tumor pattern in the ear lobules was characterized by slow growth, with a peak size of 6,8 mm in the immunocompetent swine at 3 weeks. All tumors were shown to be malignant by histology. In contrast, inoculums of the transformed fibroblast cell line in swine livers showed no evidence of tumor growth at 3 weeks. Conclusions. Development of a transformed swine fibroblast cell line was successful, resulting in an in vivo malignant tumor. Cell line inoculums had tumorigenic properties in nude mice, wild-type mice, and immunosuppressed swine, as judged by uncontrolled cell growth, invasion of surrounding tissue, neoangiogenesis, and invasion of normal vasculature, resulting in the formation of tumor nodules. Such properties were not observed in swine upon inoculation into the liver/portal circulation. [source] Role of Lung Surfactant in Respiratory Disease: Current Knowledge in Large Animal MedicineJOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 2 2009U. Christmann Lung surfactant is produced by type II alveolar cells as a mixture of phospholipids, surfactant proteins, and neutral lipids. Surfactant lowers alveolar surface tension and is crucial for the prevention of alveolar collapse. In addition, surfactant contributes to smaller airway patency and improves mucociliary clearance. Surfactant-specific proteins are part of the innate immune defense mechanisms of the lung. Lung surfactant alterations have been described in a number of respiratory diseases. Surfactant deficiency (quantitative deficit of surfactant) in premature animals causes neonatal respiratory distress syndrome. Surfactant dysfunction (qualitative changes in surfactant) has been implicated in the pathophysiology of acute respiratory distress syndrome and asthma. Analysis of surfactant from amniotic fluid allows assessment of fetal lung maturity (FLM) in the human fetus and exogenous surfactant replacement therapy is part of the standard care in premature human infants. In contrast to human medicine, use and success of FLM testing or surfactant replacement therapy remain limited in veterinary medicine. Lung surfactant has been studied in large animal models of human disease. However, only a few reports exist on lung surfactant alterations in naturally occurring respiratory disease in large animals. This article gives a general review on the role of lung surfactant in respiratory disease followed by an overview of our current knowledge on surfactant in large animal veterinary medicine. [source] Skeletal health: primate model of postmenopausal osteoporosisAMERICAN JOURNAL OF PRIMATOLOGY, Issue 9 2009S.Y. Smith Abstract Currently, the nonhuman primate is the most widely used large animal model to evaluate the safety and efficacy of new drug entities to treat or prevent estrogen-deficiency-induced bone loss and osteoporosis. Surgical ovariectomy (OVX) induces a state of high bone turnover and rapid bone loss establishing a new steady-state bone mass within 8,9 months. Many systems in the monkey are similar to humans, including skeletal and reproductive physiology and the immune system, making this a plausible model suitable to evaluate the effects of new bone drugs. The long-term sequelae following OVX and withdrawal of monthly exposure to cyclic reproductive hormones in older female monkeys (cynomolgus and rhesus) mimics estrogen depletion and postmenopausal bone loss occurring in women. Characterization of the primate model revealed an apparent limitation to the extent of bone loss. Animals lose bone mass after OVX, but the extent of the bone loss cannot be described as osteoporotic. The small differences between OVX and sham-operated controls in many important bone measurements is overcome by including 15,20 animals per group to provide adequate statistical power. The long-term, at least 16 month, bone safety studies performed to satisfy regulatory guidelines provide an opportunity to study treatment effects for an extended period not covered in shorter-term safety studies. In vivo end-points such as densitometry and biochemical markers translate easily to clinical use, while biomechanical end-points that cannot be measured clinically can be used to predict fracture prevention. To date, the monkey OVX model has been used to support submissions for many new drugs including anabolics, bisphosphonates and selective estrogen receptor modulators. Despite its limitations, the OVX monkey model remains the best characterized of the large animal models of osteopenia and has become integral to osteoporosis drug development. Am. J. Primatol. 71:752,765, 2009. © 2009 Wiley-Liss, Inc. [source] Ex vivo hypothermic recirculatory adenoviral gene transfer to the transplanted pig heartTHE JOURNAL OF GENE MEDICINE, Issue 7 2006Keiji Oi Abstract Background To facilitate the application of adenoviral gene therapy in clinical heart transplantation, we developed an ex vivo hypothermic recirculatory adenoviral gene transfer method to the transplanted pig heart. Methods Experimental animals were assigned into three groups; controls, 1 × 108 plaque-forming units (pfu)/ml group and 1 × 109 pfu/ml group. During the 30 min gene transfer perfusion, 200 ml of University of Wisconsin solution containing the adenoviral vector was recirculated through the coronary vessels. The myocardial temperature was maintained below 4 °C and the perfusion pressure was adjusted at 50 mmHg. Results Cardiac myocyte transduction efficiencies in the 1 × 108 pfu/ml group were 0.04% and 0.07%, whereas transduction efficiencies in the 1 × 109 pfu/ml group were widely distributed from 0.45% to 22.62%. The gene transduction efficiency increased with the virus titer. Additionally, no difference in the transduction efficiency was observed between different segments of the left ventricle. The current gene transfer method at 1 × 109 pfu/ml of adenovirus titer enabled homogeneous gene transduction into the transplanted pig heart up to a maximum of 22.62%. Conclusions This model can be applied to a large isolated heart and will greatly facilitate the investigation of gene therapy in large animal models of heart transplantation. Copyright © 2006 John Wiley & Sons, Ltd. [source] Translating Sleeping Beauty transposition into cellular therapies: Victories and challengesBIOESSAYS, Issue 9 2010Zsuzsanna Izsvák Abstract Recent results confirm that long-term expression of therapeutic transgenes can be achieved by using a transposon-based system in primary stem cells and in vivo. Transposable elements are natural DNA transfer vehicles that are capable of efficient genomic insertion. The latest generation, Sleeping Beauty transposon-based hyperactive vector (SB100X), is able to address the basic problem of non-viral approaches , that is, low efficiency of stable gene transfer. The combination of transposon-based non-viral gene transfer with the latest improvements of non-viral delivery techniques could provide a long-term therapeutic effect without compromising biosafety. The new challenges of pre-clinical research will focus on further refinement of the technology in large animal models and improving the safety profile of SB vectors by target-selected transgene integration into genomic "safe harbors." The first clinical application of the SB system will help to validate the safety of this approach. [source] |