Home About us Contact | |||
Layered Medium (layered + medium)
Selected AbstractsExperimental validation of the wavefield transform of electromagnetic fieldsGEOPHYSICAL PROSPECTING, Issue 5 2002Kaushik Das The wavefield transform is a mathematical technique for transforming low-frequency electromagnetic (EM) signals to a non-diffusive wave domain. The ray approximation is valid in the transform space and this makes traveltime tomography for 3D mapping of the electrical conductivity distribution in the subsurface possible. The transform, however, imposes stringent frequency bandwidth and signal-to-noise ratio requirements on the data. Here we discuss a laboratory scale experiment designed to collect transform quality EM data, and to demonstrate the practical feasibility of transforming these data to the wavefield domain. We have used the scalable nature of EM fields to design a time-domain experiment using graphite blocks to simulate realistic field conditions while leaving the time scale undisturbed. The spatial dimensions have been scaled down by a factor of a thousand by scaling conductivity up by a factor of a million. The graphite blocks have two holes drilled into them to carry out cross-well and borehole-to-surface experiments. Steel sheets have been inserted between the blocks to simulate a conductive layer. Our experiments show that accurate EM data can be recorded on a laboratory scale model even when the scaling of some features, such as drill-hole diameters, is not maintained. More importantly, the time-domain EM data recorded in cross-well and surface-to-borehole modes can be usefully and accurately transformed to the wavefield domain. The observed wavefield propagation delay is proportional to the direct distance between the transmitter and receiver in a homogeneous medium. In a layered medium, data accuracy is reduced and, hence, our results are not so conclusive. On the basis of the experimental results we conclude that the wavefield transform could constitute a valid approach to the interpretation of accurate, undistorted time-domain data if further improvement in the transform can be realized. [source] Interval velocity and thickness estimate from wide-angle reflection dataGEOPHYSICAL PROSPECTING, Issue 4 2001Roberto De Franco A method to estimate interval velocities and thickness in a horizontal isotropic layered medium from wide-angle reflection traveltime curves is presented. The method is based on a relationship between the squared reflection traveltime differences and the squared offset differences relative to two adjacent reflectors. The envelope of the squared-time versus offset-difference curves, for rays with the same ray parameter, is a straight line, whose slope is the inverse of the square of the interval velocity and whose intercept is the square of the interval time. The method yields velocity and thickness estimates without any knowledge of the overlying stratification. It can be applied to wide-angle reflection data when either information on the upper crust and/or refraction control on the velocity is not available. Application to synthetic and real data shows that the method, used together with other methods, allows us to define a reliable 1D starting model for estimating a depth profile using either ray tracing or another technique. [source] A numerical study of flexural buckling of foliated rock slopesINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2001D. P. Adhikary Abstract The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic,perfectly plastic. Condition of slip at the interfaces are determined by a Mohr,Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87,104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright © 2001 John Wiley & Sons, Ltd. [source] Superresolution planar diffraction tomography through evanescent fields,INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, Issue 1 2002Sean K. Lehman We consider the problem of noninvasively locating objects buried in a layered medium such as land mines in the ground or objects concealed in a wall. In such environments, the transmitter(s) and receiver(s) are frequently within the near-field region of the illuminating radiation. In these cases, the scattered evanescent field carries useful information on the scattering object. Conventional diffraction tomography techniques neglect, by their design, the evanescent field. Under near-field conditions, they treat it as noise as opposed to valid data. If correctly incorporated into a reconstruction algorithm, the evanescent field, which carries high spatial frequency information, can be used to achieve resolution beyond the classical limit of ,/2, or "superresolution." We build on the generalized holography theory presented by Langenberg to develop a planar diffraction tomography algorithm that incorporates evanescent field information to achieve superresolution. Our theory is based on a generalization of the Fourier transform, which allows for complex spatial frequencies in a manner similar to the Laplace transform. We specialize our model to the case of a two-dimensional multimonostatic, wideband imaging system, and derive an extended resolution reconstruction procedure. We implement and apply our reconstruction to two data sets collected using the Lawrence Livermore National Laboratory (LLNL) Micropower Impulse Radar (MIR). © 2002 John Wiley & Sons, Inc. Int J Imaging Syst Technol 12, 16,26, 2002 [source] Neural network model for the efficient calculation of Green's functions in layered mediaINTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, Issue 2 2003E. A. Soliman Abstract In this article, neural networks are employed for fast and efficient calculation of Green's functions in a layered medium. Radial basis function networks (RBFNs) are effectively trained to estimate the coefficients and the exponents that represent a Green's function in the discrete complex image method (DCIM). Results show very good agreement with the DCIM, and the trained RBFNs are very fast compared with the corresponding DCIM. © 2003 Wiley Periodicals, Inc. Int J RF and Microwave CAE 13: 128,135, 2003. [source] Numerical analysis of electrically small structures embedded in a layered mediumMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 5 2009Yongpin P. Chen Abstract Accurate numerical analysis of electrically small structures embedded in a layered medium is presented in this letter. In our approach, the matrix-friendly layered medium Green's function is implemented for its elegant expression and singularity of lowest order. The current is decomposed into divergence-free part and nondivergence-free part according to quasi-Helmholtz decomposition when frequency tends to zero, to capture both capacitance and inductance physics. Frequency normalization is applied after analyzing frequency scaling properties of different blocks of the matrix system. Similar to the free space case, connection matrix is utilized to make the electro-quasi-static block amenable to iterative solvers. © 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 1304,1308, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24302 [source] Third and fourth Stokes parameters in polarimetric passive microwave remote sensing of rough surfaces over layered mediaMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 12 2008Leung Tsang Abstract We consider the four Stokes parameters in microwave emission from a layered medium with the top interface being a rough surface. The rough surface varies in one horizontal direction so that azimuthal asymmetry exists in the 3-D problem. Dyadic Green's functions of multilayered media are used to formulate the surface integral equations. Periodic boundary conditions are used. The numerical results show that the presence of the layered media below the rough surface reduces the vertical and horizontal brightness temperatures. The interaction between the rough surface and the layered media also enhance the third and fourth Stokes parameters. In particular, the fourth Stokes parameter can be large for such geometrical configurations. Results show that the nonzero third and fourth Stokes parameters exist for all frequencies and are particularly large when the rough surface has large slope. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 3063,3069, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23892 [source] |