Home About us Contact | |||
Layered Materials (layered + material)
Selected AbstractsHydrogen Bond in Layered Materials: Structural and Vibrational Properties of Kaolinite by a Periodic B3LYP Approach.CHEMINFORM, Issue 27 2006Sergio Tosoni Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source] Inorganic Analogues of GrapheneEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 27 2010C. N. R. Rao Abstract The discovery of graphene has aroused great interest in the properties and phenomena exhibited by two-dimensional inorganic materials, especially when they comprise only a single, two or a few layers. Graphene-like MoS2 and WS2 have been prepared by chemical methods, and the materials have been characterized by electron microscopy, atomic force microscopy (AFM) and other methods. Boron nitride analogues of graphene have been obtained by a simple chemical procedure starting with boric acid and urea and have been characterized by various techniques that include surface area measurements. A new layered material with the composition BCN possessing a few layers and a large surface area discovered recently exhibits a large uptake of CO2. [source] Design and application of layered composites with the prescribed magnetic permeabilityINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 1 2010Jae Seok Choi Abstract This research aims to design the microstructure with the prescribed magnetic permeability and proposes a design method to control the magnetic flux flow using layered microstructures. In the optimization problem for the microstructure design, the objective function is set up to minimize the difference between the homogenized magnetic permeability during the design process and the prescribed permeability based on the so-called inverse homogenization method. Based on the microstructure design result, a microstructure composed of layered materials is proposed for the purpose of the efficient magnetic flux control. In addition, its analytical calculation is added to confirm the feasibility of the optimized results. The layered composite of a very thin ferromagnetic material is expected to guide the magnetic flux and the performance of the magnetic system can be improved by turning the microstructures appropriately. Optimal rotation angles of microstructures are determined using the homogenization design method. The proposed design method is applied to an example to confirm its feasibility. Copyright © 2009 John Wiley & Sons, Ltd. [source] Simultaneous refinement of structure and microstructure of layered materialsJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2004Matteo Leoni The recursive description of stacking in layered crystals, originally developed by Treacy et al. [Proc. R. Soc. London Ser. A (1991), 433, 499,520] and implemented in the DIFFaX code, is enclosed in a non-linear least-squares minimization routine and combined with additional models (of specimen-related broadening and instrumental broadening) to allow the simultaneous refinement of both structural and microstructural parameters of a layered crystal. This implementation is named DIFFaX+. As examples, the refinements both of a simulated pattern of diamond, showing fault clustering, and of the observed powder pattern of a synthetic stoichiometric nanocrystalline chrysotile are reported. [source] Application of kinoform lens for X-ray reflectivity analysisJOURNAL OF SYNCHROTRON RADIATION, Issue 2 2010M. K. Tiwari In this paper the first practical application of kinoform lenses for the X-ray reflectivity characterization of thin layered materials is demonstrated. The focused X-ray beam generated from a kinoform lens, a line of nominal size ,50,µm × 2,µm, provides a unique possibility to measure the X-ray reflectivities of thin layered materials in sample scanning mode. Moreover, the small footprint of the X-ray beam, generated on the sample surface at grazing incidence angles, enables one to measure the absolute X-ray reflectivities. This approach has been tested by analyzing a few thin multilayer structures. The advantages achieved over the conventional X-ray reflectivity technique are discussed and demonstrated by measurements. [source] A New, Yet Familiar, Lamellar ZeoliteCHEMCATCHEM, Issue 3 2010Michael Tsapatsis Prof. Compulsive layers: Lamellar zeolites are crystalline layered materials with porosity within the layers. A recent breakthrough regarding the synthesis of a new lamellar zeolite with the well-known ZSM-5 structure is highlighted in light of previous work on lamellar zeolites and the emerging applications of hierarchical zeolites and zeolitic layers, which include heterogeneous catalysis and zeolite membranes. [source] |