Home About us Contact | |||
Layered Compounds (layered + compound)
Selected AbstractsStructural Study of Novel Graphite,Lithium,Calcium Intercalation CompoundsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2004Sébastien Pruvost Abstract Three new layered compounds were synthesised by immersing a pyrographite platelet in a molten Ca,Li alloy creating a new graphite intercalation compound family. The samples were studied by X-ray and neutron diffraction, revealing that the intercalated sheets are polylayered. The study of the 00l reflections allowed us to establish the c -axis stacking of these three phases. The ,-phase exhibits a five-layered intercalated sheet which has something in common with a Li,Ca,Li,Ca,Li slice cut in the CaLi2 structure (ThMn2 Laves phase type). The ,-phase, which is richer in metallic elements and with a greater repeat distance, possesses seven-layered intercalated sheets due to the splitting of the middle lithium plane in three. The third phase is a pseudo-binary compound, containing monolayered sheets and with a formula close to CaC6. Electron microdiffraction allowed us to determine the 2D unit cell for each compound, all of which were commensurate with that of graphite. Charge transfer from the intercalate to the host lattice was evaluated for the three phases from hk0 data, leading to high values. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Van der Waals density functional theory with applicationsINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2005D. C. Langreth Abstract The details of a density functional that includes van der Waals (vdW) interactions are presented. In particular we give some key steps of the transition from a form for fully planar systems to a procedure for realistic layered compounds that have planar symmetry only on large-distance scales, and which have strong covalent bonds within the layers. It is shown that the random-phase approximation of that original functional can be replaced by an approximation that is exact at large separation between vdW interacting fragments and seamless as the fragments merge. An approximation to the latter which renders the functional easily applicable and which preserves useful accuracy in both limits and in between is given. We report additional data from applications to forms of graphite, boron nitride, and molybdenum sulfide not reported in our previous communication. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source] Nanoparticles of CdCl2 with closed cage structuresISRAEL JOURNAL OF CHEMISTRY, Issue 1 2001Reshef Tenne Nanoparticles of various layered compounds having a closed cage or nanotubular structure, designated also inorganic fullerene-like (IF) materials, have been reported in the past. In this work IF -CdCl2 nanoparticles were synthesized by two methods. In one technique, a high temperature evaporation and subsequent condensation of dried cadmium chloride powder was used. In the other method, electron beam irradiation of the source powder led to its recrystallization into closed nanoparticles with a nonhollow core. The two methods are shown to produce nanoparticles of different topologies. While mostly spherical nested structures are obtained from the high temperature process, polyhedra with hexagonal or elongated rectangular characters are obtained by the electron beam induced process. The analysis also shows that, while the source (dried) powder is orthorhombic cadmium chloride monohydrate, the crystallized IF cage consists of the anhydrous 3R polytype which is not stable as bulk material in ambient atmosphere. Consistent with previous observations, this study shows that the seamless structure of the IF materials can stabilize phases, which are otherwise unstable in ambient conditions. [source] The influence of layered compounds on the properties of starch/layered compound compositesPOLYMER INTERNATIONAL, Issue 6 2003Helena-M Wilhelm Abstract Glycerol-plasticized starch films were modified by addition of various layered compounds as fillers, two being of natural origin (kaolinite, a neutral mineral clay, and hectorite, a cationic exchanger mineral clay) and two synthetic (layered double hydroxide, LDH, an anionic exchanger, and brucite, having a neutral structure). The effects of the filler type and the plasticizer were analyzed by X-ray diffraction, dynamic mechanical analysis and thermogravimetry. The storage modulus was higher for kaolinite > brucite > hectorite than for LDH starch composites. However, only the hectorite filler presented a shift of the interplanar basal distance to higher values, which represents the intercalation of glycerol molecules between the clay layers. The glycerol intercalation is minimized in plasticized,oxidized starch films where the oxidized starch chains are preferentially intercalated. Copyright © 2003 Society of Chemical Industry [source] Cobalt Coordination and Clustering in ,-Co(OH)2 Revealed by Synchrotron X-ray Total ScatteringCHEMISTRY - A EUROPEAN JOURNAL, Issue 33 2010James Abstract Structures of layered metal hydroxides are not well described by traditional crystallography. Total scattering from a synthesis-controlled subset of these materials, as described here, reveals that different cobalt coordination polyhedra cluster within each layer on short length scales, offering new insights and approaches for understanding the properties of these and related layered materials. Structures related to that of brucite [Mg(OH)2] are ubiquitous in the mineral world and offer a variety of useful functions ranging from catalysis and ion-exchange to sequestration and energy transduction, including applications in batteries. However, it has been difficult to resolve the atomic structure of these layered compounds because interlayer disorder disrupts the long-range periodicity necessary for diffraction-based structure determination. For this reason, traditional unit-cell-based descriptions have remained inaccurate. Here we apply, for the first time to such layered hydroxides, synchrotron X-ray total scattering methods,analyzing both the Bragg and diffuse components,to resolve the intralayer structure of three different ,-cobalt hydroxides, revealing the nature and distribution of metal site coordination. The different compounds with incorporated chloride ions have been prepared with kinetic control of hydrolysis to yield different ratios of octahedrally and tetrahedrally coordinated cobalt ions within the layers, as confirmed by total scattering. Real-space analyses indicate local clustering of polyhedra within the layers, manifested in the weighted average of different ordered phases with fixed fractions of tetrahedrally coordinated cobalt sites. These results, hidden from an averaged unit-cell description, reveal new structural characteristics that are essential to understanding the origin of fundamental material properties such as color, anion exchange capacity, and magnetic behavior. Our results also provide further insights into the detailed mechanisms of aqueous hydrolysis chemistry of hydrated metal salts. We emphasize the power of the methods used here for establishing structure,property correlations in functional materials with related layered structures. [source] Metal Aminocarboxylate Coordination Polymers with Chain and Layered StructuresCHEMISTRY - A EUROPEAN JOURNAL, Issue 23 2005Meenakshi Dan Abstract The synthesis and structures of metal aminocarboxylates prepared in acidic, neutral, or alkaline media have been explored with the purpose of isolating coordination polymers with linear chain and two-dimensional layered structures. Metal glycinates of the formulae [CoCl2(H2O)2(CO2CH2NH3)] (I), [MnCl2(CO2CH2NH3)2] (II), and [Cd3Cl6(CO2CH2NH3)4] (III) with one-dimensional chain structures have been obtained by the reaction of the metal salts with glycine in an acidic medium under hydro/solvothermal conditions. These chain compounds contain glycine in the zwitterionic form. 4-Aminobutyric acid transforms to a cyclic amide under such reaction conditions, and the amide forms a chain compound of the formula [CdBr2(C4H7NO)2] (IV). Glycine in the zwitterionic form also forms a two-dimensional layered compound of the formula [Mn(H2O)2(CO2CH2NH3)2]Br2 (V). 6-Aminocaproic acid under alkaline conditions forms layered compounds with metals at room temperature, the metal being coordinated both by the amino nitrogen and the carboxyl oxygen atoms. Of the two layered compounds [Cd{CO2(CH2)5NH2}2],2,H2O (VI) and [Cu{CO2(CH2)5NH2}2],2,H2O (VII), the latter has voids in which water molecules reside. [source] |