Latter Responses (latter + response)

Distribution by Scientific Domains


Selected Abstracts


Fibre-free diet leads to impairment of neuronally mediated muscle contractile response in rat distal colon

NEUROGASTROENTEROLOGY & MOTILITY, Issue 12 2006
R. Mitsui
Abstract, Dietary fibre consumption is known to be beneficial to increase stool bulk and frequency. In contrast, it is unclear whether chronic dietary fibre deficiency affects colonic motor functions, especially neuronally mediated muscle contractions. In this study, rats were fed a fibre-free diet or diet containing dietary fibre (cellulose or guar gum) for 27 days. Furthermore, neurogenic and myogenic contractions were evaluated in circular and longitudinal muscle strips of the distal colon. Additionally, the number of enterochromaffin (EC) cells, which play important roles in the initiation of the peristaltic reflex, was also examined by immunohistochemistry for serotonin. Myogenic contractions induced by carbachol or substance P were examined in the presence of tetrodotoxin. Circular muscle was hyposensitive to carbachol, but longitudinal muscle was hypersensitive to substance P in the fibre-free group. Nerve-mediated circular (5,20 Hz) and longitudinal (1,2 Hz) muscle contractions evoked by electrical field stimulation were attenuated in the fibre-free group and the latter response was almost abolished by atropine, suggesting functional changes of cholinergic neurons. EC cell number was decreased in the fibre-free group. In conclusion, changes in neurogenic and myogenic contractions and a decrease in EC cell number observed may affect colonic motility of the fibre-free group. [source]


A Gonadotropin-Releasing Hormone Insensitive, Thapsigargin-Sensitive Ca2+ Store Reduces Basal Gonadotropin Exocytosis and Gene Expression: Comparison with Agonist-Sensitive Ca2+ Stores

JOURNAL OF NEUROENDOCRINOLOGY, Issue 2 2003
J. D. Johnson
Abstract We examined whether distinct Ca2+ stores differentially control basal and gonadotropin (GTH-II)-releasing hormone (GnRH)-evoked GTH-II release, long-term GTH-II secretion and contents, and GTH-II- , mRNA expression in goldfish. Thapsigargin (Tg)-sensitive Ca2+ stores mediated neither caffeine-evoked GTH-II release, nor salmon (s)GnRH- and chicken (c)GnRH-II-stimulated secretion; the latter responses were previously shown to involve ryanodine (Ry)-sensitive Ca2+ stores. Surprisingly, Tg decreased basal GTH-II release. This response was attenuated by prior exposure to sGnRH and caffeine, but was insensitive to the phosphatase inhibitor okadaic acid, the inhibitor of constitutive release brefeldin A and cGnRH-II. GTH-II- , mRNA expression was decreased at 24 h by 2 µm Tg, and by inhibiting (10 µm Ry) and stimulating (1 nm Ry) Ry receptors. Transient increases in GTH-II- , mRNA were observed at 2 h and 12 h following 10 µm and 1 nm Ry treatment, respectively. Effects of Tg, Ry and GnRH on long-term GTH-II secretion, contents and apparent production differed from one another, and these changes were not well correlated with changes in GTH-II- , mRNA expression. Our data show that GTH-II secretion, storage and transcription can be independently controlled by distinct Ca2+ stores. [source]


Calcium-activated potassium channels and endothelial dysfunction: therapeutic options?

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2009
Michel Félétou
The three subtypes of calcium-activated potassium channels (KCa) of large, intermediate and small conductance (BKCa, IKCa and SKCa) are present in the vascular wall. In healthy arteries, BKCa channels are preferentially expressed in vascular smooth muscle cells, while IKCa and SKCa are preferentially located in endothelial cells. The activation of endothelial IKCa and SKCa contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na+/K+ -ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H2O2) hyperpolarize and relax the underlying smooth muscle cells by activating BKCa. In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BKCa. Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle KCa could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IKCa may prevent restenosis and that of BKCa channels sepsis-dependent hypotension. Mandarin translation of abstract [source]


High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4+ T cell responses more than 30 years post-vaccinia virus vaccination

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2009
M. Wang
Summary Interferon-, secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human leucocyte antigen (HLA) class I binders (KD , 5 nM). However, five of the individuals tested did not show typical CD8+ T cell-mediated HLA class I-restricted responses. Instead, these donors showed CD4+ T cell-dependent responses against four of a total of eight antigenic 9-mer peptides discovered recently by our group. These latter responses were blocked specifically in the presence of anti-HLA class II antibody. We conclude that long-lived memory responses against pox virus-derived 9-mer peptides, with high binding affinity for HLA class I molecules, are mediated in some cases by CD4+ T cells and apparently restricted by HLA class II molecules. [source]