L-type Ca2+ Current (l-type + ca2+_current)

Distribution by Scientific Domains


Selected Abstracts


Role of Ca2+ -Activated Cl, Current in Ventricular Action Potentials of Sheep During Adrenoceptor Stimulation

EXPERIMENTAL PHYSIOLOGY, Issue 2 2001
Arie O. Verkerk
Adrenoceptor stimulation enhances repolarising and depolarising membrane currents to different extents in cardiac myocytes. We investigated the opposing effects of the repolarising Ca2+ -activated Cl, current (ICl(Ca)) and depolarising L-type Ca2+ current (ICa,L) on the action potential configuration of sheep ventricular myocytes stimulated with noradrenaline. Whole-cell current-clamp recordings revealed that noradrenaline accelerated and prolonged phase-1 repolarisation. We define the minimal potential at the end of phase-1 repolarisation as ,notch level'. Noradrenaline (1 ,M) caused the notch level to fall from 14 ± 2.6 to 7.8 ± 2.8 mV (n= 24), but left action potential duration, resting membrane potential or action potential amplitude unaffected. Whole-cell voltage-clamp recordings showed that 1 ,M noradrenaline increased both ICa,L and ICl(Ca), but it had no significant effect on the principal K+ currents. Blockage of ICl(Ca) by 0.5 mM 4,4,-diisothiocyanatostilbene-2,2,-disulphonic acid (DIDS) in both the absence and the presence of noradrenaline abolished phase-1 repolarisation. In the presence of noradrenaline, DIDS caused elevation of the plateau phase amplitude and an increase in the action potential duration. In conclusion, elevation of the plateau phase amplitude and action potential prolongation associated with an increased ICa,L upon adrenoceptor stimulation is prevented by an increased ICl(Ca) in sheep ventricular myocytes. [source]


Mechanisms Associated with the Negative Inotropic Effect of Deuterium Oxide in Single Rat Ventricular Myocytes

EXPERIMENTAL PHYSIOLOGY, Issue 2 2000
K. Hongo
Deuterium oxide (D2O) is known to cause a negative inotropic effect in muscle although the mechanisms associated with this response in cardiac muscle are not well understood. We studied the effects of D2O in single rat ventricular myocytes in order to characterise the mechanisms associated with its negative inotropic effect and to assess its possible use as an acute modulator of microtubules. D2O rapidly reduced the magnitude of contraction in rat ventricular myocytes, and there was some recovery of contraction in the presence of D2O. Colchicine, an agent known to depolymerise microtubules, did not modify the effect of D2O. D2O decreased the L-type Ca2+ current (ICa), measured under whole cell and perforated patch clamp conditions. Slowing of the time to peak and a delay in inactivation of ICa were observed. Intracellular calcium ([Ca2+]i) and sodium ([Na+]i) were measured using the fluorescent indicators fura-2 and SBFI, respectively. The fall in contraction upon exposure to D2O was not associated with a fall in the [Ca2+]i transient; this response is indicative of a reduction in myofilament Ca2+ sensitivity. Both the [Ca2+]i transient and [Na+]i increased during the partial recovery of contraction in the presence of D2O. We conclude that a decrease in the myofilament sensitivity for Ca2+ and a reduction in Ca2+ influx via ICa are principally responsible for the negative inotropic effect of D2O in cardiac muscle. We found no evidence to explain the negative inotropic effect of D2O in terms of microtubule proliferation. In addition we suggest that acute application of D2O is not a useful procedure for the investigation of the role of microtubules in excitation-contraction coupling in cardiac muscle. [source]


Effects of 4-piperidinomethyl-2-isopropyl-5-methylphenol on oxidative stress and calcium current

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2005
Mei-Han Huang
4-Piperidinomethyl-2-isopropyl-5-methylphenol (THPI) was synthesized by reaction of thymol with piperidine and formaldehyde. The biological effect of THPI on superoxide anion scavenging activity, antiplatelet activity and calcium current inhibition were investigated. THPI (50 ,m) was shown to be a scavenger of superoxide radicals in human neutrophils stimulated with N -formyl-Met-Leu-Phe (66% inhibition). Since superoxide anions are essential for platelet aggregation and L-type Ca2+ -channel activity, we further found that THPI inhibited platelet aggregation induced by arachidonic acid (IC50 46.80 ± 6.88 ,m). The effect of THPI on Ca2+ current in NG108,15 cells was investigated using the whole-cell voltage-clamp technique. THPI inhibited voltage-dependent L-type Ca2+ current (ICa,L). The IC50 value of THPI-induced inhibition of ICa,L was 3.60 ± 0.81 ,m. THPI caused no change in the overall shape of the current-voltage relationship of ICa,L. This indicates that THPI is an inhibitor of ICa,L in NG108,15 cells. Therefore, the channel-blocking properties of THPI may contribute to the underlying mechanism by which it affects neuronal or neuroendocrine function. Furthermore, no significant cytotoxic effects of THPI (0.3,50 ,m) were observed in NG108,15 cells. The results indicate that THPI is a potential reactive oxygen species scavenger and may prevent platelet aggregation or inhibit L-type Ca2+ -channel activity, possibly by scavenging reactive oxygen species. [source]


Laminin acts via focal adhesion kinase/phosphatidylinositol-3, kinase/protein kinase B to down-regulate ,1 -adrenergic receptor signalling in cat atrial myocytes

THE JOURNAL OF PHYSIOLOGY, Issue 3 2009
Y. G. Wang
We previously reported that short-term (2 h) plating of cat atrial myocytes on the extracellular matrix protein, laminin (LMN) decreases adenylate cyclase activity and ,1 -adrenergic receptor (,1 -AR) stimulation of L-type Ca2+ current (ICa,L). The present study sought to determine whether LMN-mediated down-regulation of ,1 signalling is due to down-regulation of adenylate cyclase and to gain insight into the signalling mechanisms responsible. ,1 -AR stimulation was achieved by 0.01 ,m isoproterenol (isoprenaline) plus 0.1 ,m ICI 118551, a selective ,2 -AR antagonist. Atrial myocytes were plated for at least 2 h on uncoated cover-slips (,LMN) or cover-slips coated with LMN (+LMN). As previously reported, ,1 -AR stimulation of ICa,L was significantly smaller in +LMN compared to ,LMN atrial myocytes. In ,LMN myocytes, 10 ,m LY294002 (LY), a specific inhibitor of PI-(3)K, had no effect on ,1 -AR stimulation of ICa,L. In +LMN myocytes, however, LY significantly increased ,1 -AR stimulation of ICa,L. Western blots revealed that compared with ,LMN myocytes, +LMN myocytes showed a significant increase in Akt phosphorylation at Ser-473, which was prevented by LY. In another approach, +LMN myocytes were infected (multiplicity of infection (MOI), 100; 24 h) with replication-defective adenoviruses (Adv) expressing dominant-negative inhibitors of focal adhesion kinase (FAK) (Adv-FRNK or Adv-Y397F-FAK) or Akt (Adv-dnAkt). Compared with control cells infected with Adv-,-galactosidase, cells infected with Adv-FRNK, Adv-Y397F-FAK or Adv-dnAkt each exhibited a significantly greater ,1 -AR stimulation of ICa,L. In ,LMN myocytes LY had no effect on forskolin (FSK)-stimulated ICa,L. However, in +LMN myocytes LY significantly increased FSK-stimulated ICa,L. Similar results were obtained in +LMN atrial myocytes infected with Adv-FRNK. We conclude that LMN binding to ,1 -integrin receptors acts via FAK/PI-(3)K/Akt to inhibit adenylate cyclase activity and thereby down-regulates ,1 -AR-mediated stimulation of ICa,L. These findings provide new insight into the cellular mechanisms by which the extracellular matrix can modulate atrial ,-AR signalling. [source]


cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes

THE JOURNAL OF PHYSIOLOGY, Issue 3 2007
Sunita Warrier
Many different receptors can stimulate cAMP synthesis in the heart, but not all elicit the same functional responses. For example, it has been recognized for some time that prostaglandins such as PGE1 increase cAMP production and activate PKA, but they do not elicit responses like those produced by ,-adrenergic receptor (,AR) agonists such as isoproterenol (isoprenaline), even though both stimulate the same signalling pathway. In the present study, we confirm that isoproterenol, but not PGE1, is able to produce cAMP-dependent stimulation of the L-type Ca2+ current in guinea pig ventricular myocytes. This is despite finding evidence that these cells express EP4 prostaglandin receptors, which are known to activate Gs -dependent signalling pathways. Using fluorescence resonance energy transfer-based biosensors that are either freely diffusible or bound to A kinase anchoring proteins, we demonstrate that the difference is due to the ability of isoproterenol to stimulate cAMP production in cytosolic and caveolar compartments of intact cardiac myocytes, while PGE1 only stimulates cAMP production in the cytosolic compartment. Unlike other receptor-mediated responses, compartmentation of PGE1 responses was not due to concurrent activation of a Gi -dependent signalling pathway or phosphodiesterase activity. Instead, compartmentation of the PGE1 response in cardiac myocytes appears to be due to transient stimulation of cAMP in a microdomain that can communicate directly with the bulk cytosolic compartment but not the caveolar compartment associated with ,AR regulation of L-type Ca2+ channel function. [source]


KMUP-1 activates BKCa channels in basilar artery myocytes via cyclic nucleotide-dependent protein kinases

BRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2005
Bin-Nan Wu
This study investigated whether KMUP-1, a synthetic xanthine-based derivative, augments the delayed-rectifier potassium (KDR)- or large-conductance Ca2+ -activated potassium (BKCa) channel activity in rat basilar arteries through protein kinase-dependent and -independent mechanisms. Cerebral smooth muscle cells were enzymatically dissociated from rat basilar arteries. Conventional whole cell, perforated and inside-out patch-clamp electrophysiology was used to monitor K+ - and Ca2+ channel activities. KMUP-1 (1 ,M) had no effect on the KDR current but dramatically enhanced BKCa channel activity. This increased BKCa current activity was abolished by charybdotoxin (100 nM) and iberiotoxin (100 nM). Like KMUP-1, the membrane-permeable analogs of cGMP (8-Br-cGMP) and cAMP (8-Br-cAMP) enhanced the BKCa current. BKCa current activation by KMUP-1 was markedly inhibited by a soluble guanylate cyclase inhibitor (ODQ 10 ,M), an adenylate cyclase inhibitor (SQ 22536 10 ,M), competitive antagonists of cGMP and cAMP (Rp-cGMP, 100 ,M and Rp-cAMP, 100 ,M), and cGMP- and cAMP-dependent protein kinase inhibitors (KT5823, 300 nM and KT5720, 300 nM). Voltage-dependent L-type Ca2+ current was significantly suppressed by KMUP-1 (1 ,M), and nearly abolished by a calcium channel blocker (nifedipine, 1 ,M). In conclusion, KMUP-1 stimulates BKCa currents by enhancing the activity of cGMP-dependent protein kinase, and in part this is due to increasing cAMP-dependent protein kinase. Physiologically, this activation would result in the closure of voltage-dependent calcium channels and the relaxation of cerebral arteries. British Journal of Pharmacology (2005) 146, 862,871. doi:10.1038/sj.bjp.0706387 [source]


Electrophysiological effects of 5-hydroxytryptamine on isolated human atrial myocytes, and the influence of chronic , -adrenoceptor blockade

BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2003
Davide Pau
5-Hydroxytryptamine (5-HT) has been postulated to play a proarrhythmic role in the human atria via stimulation of 5-HT4 receptors. The aims of this study were to examine the effects of 5-HT on the L-type Ca2+ current (ICaL) action potential duration (APD), the effective refractory period (ERP) and arrhythmic activity in human atrial cells, and to assess the effects of prior treatment with , -adrenoceptor antagonists. Isolated myocytes, from the right atrial appendage of 27 consenting patients undergoing cardiac surgery who were in sinus rhythm, were studied using the whole-cell perforated patch-clamp technique at 37°C. 5-HT (1 nM,10 ,M) caused a concentration-dependent increase in ICaL, which was potentiated in cells from , -blocked (maximum response to 5-HT, Emax=299±12% increase above control) compared to non- , -blocked patients (Emax=220±6%, P<0.05), but with no change in either the potency (log EC50: ,7.09±0.07 vs ,7.26±0.06) or Hill coefficient (nH: 1.5±0.6 vs 1.5±0.3) of the 5-HT concentration,response curve. 5-HT (10 ,M) produced a greater increase in the APD at 50% repolarisation (APD50) in cells from , -blocked patients (of 37±10 ms, i.e. 589±197%) vs non- , -blocked patients (of 10±4 ms, i.e. 157±54%; P<0.05). Both the APD90 and the ERP were unaffected by 5-HT. Arrhythmic activity was observed in response to 5-HT in five of 17 cells (29%) studied from , -blocked, compared to zero of 16 cells from the non- , -blocked patients (P<0.05). In summary, the 5-HT-induced increase in calcium current was associated with a prolonged early plateau phase of repolarisation, but not late repolarisation or refractoriness, and the enhancement of these effects by chronic , -adrenoceptor blockade was associated with arrhythmic potential. British Journal of Pharmacology (2003) 140, 1434,1441. doi:10.1038/sj.bjp.0705553 [source]


Block of cardiac delayed-rectifier and inward-rectifier K+ currents by nisoldipine

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2003
Sergey Missan
The objective of this study was to determine the concentration-dependent effects of nisoldipine, a dihydropyridine Ca2+ channel blocker, on K+ currents in guinea-pig ventricular myocytes. Myocytes in the conventional whole-cell configuration were bathed in normal Tyrode's solution or K+ -free Tyrode's solution for the measurement of the effects of 0.01,100 ,M nisoldipine on rapidly activating delayed-rectifier K+ current (IKr), slowly activating delayed-rectifier K+ current (IKs), inwardly rectifying K+ current (IK1), and reference L-type Ca2+ current (ICa,L). Nisoldipine inhibited IKr with an IC50 of 23 ,M, and IKs with an IC50 of 40 ,M. The drug also had weak inhibitory effects on inward- and outward-directed IK1; the IC50 determined for outward-directed current was 80 ,M. Investigation of nisoldipine action on IKs showed that inhibition occurred in the absence of previous pulsing, and with little change in the time courses of activation and deactivation. However, the drug-induced inhibition was significantly weaker at +30 mV than at +10 mV. We estimate that nisoldipine is about 30 times less selective for delayed-rectifier K+ channels than for L-type Ca2+ channels in fully polarised guinea-pig ventricular myocytes, and several orders less selective in partially depolarised myocytes. British Journal of Pharmacology (2003) 140, 863,870. doi:10.1038/sj.bjp.0705518 [source]


Quercetin as a novel activator of L-type Ca2+ channels in rat tail artery smooth muscle cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2002
Simona Saponara
The aim of this study was to investigate the effects of quercetin, a natural polyphenolic flavonoid, on voltage-dependent Ca2+ channels of smooth muscle cells freshly isolated from the rat tail artery, using either the conventional or the amphotericin B-perforated whole-cell patch-clamp method. Quercetin increased L-type Ca2+ current [ICa(L)] in a concentration- (pEC50=5.09±0.05) and voltage-dependent manner and shifted the maximum of the current-voltage relationship by 10 mV in the hyperpolarizing direction, without, however, modifying the threshold and the equilibrium potential for Ca2+. Quercetin-induced ICa(L) stimulation was reversible upon wash-out. T-type Ca2+ current was not affected by quercetin. Quercetin shifted the voltage dependence of the steady-state inactivation and activation curves to more negative potentials by about 5.5 and 7.5 mV respectively, in the mid-potential of the curves as well as increasing the slope of activation. Quercetin slowed both the activation and the deactivation kinetics of the ICa(L). The inactivation time course was also slowed but only at voltages higher than 10 mV. Moreover quercetin slowed the rate of recovery from inactivation. These results prove quercetin to be a naturally-occurring L-type Ca2+ channel activator. British Journal of Pharmacology (2002) 135, 1819,1827; doi:10.1038/sj.bjp.0704631 [source]


CALCIUM ANTAGONIST PROPERTY OF CPU228, A DOFETILIDE DERIVATIVE, CONTRIBUTES TO ITS LOW INCIDENCE OF TORSADES DE POINTES IN RABBITS

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 4 2007
Zhi-Jiang Huang
SUMMARY 1Torsades de pointes (TDP) is a severe adverse effect during the clinical use of dofetilide, a selective blocker of the rapid component of the delayed rectifier potassium channel (IKr). The present study was designed to test whether CPU228, a derivative of dofetilide with calcium (Ca2+) antagonist properties, could reduce TDP without reducing the blockade of IKr. 2The incidence of TDP in a rabbit model and the effective refractory period (ERP) were measured and compared for dofetilide and CPU228. Suppression of IKr and the L-type Ca2+ current (ICa,L) and the Ca2+ transients of isolated cardiomyocytes were investigated by whole-cell patch-clamp and Fluo-3 dye spectrophotometry. 3The incidence of TDP was greatly reduced by CPU228 relative to dofetilide, occurring in only one of six rabbits compared with five of six rabbits following dofetilide (P < 0.05). In isolated atria, prolongation of ERP by CPU228 was less than that of dofetilide and no reverse frequency dependence was observed. Negative inotropism by CPU228 was significant against positive inotropism by dofetilide. CPU228 inhibited both IKr and ICa,L currents and the IC50 for ICa,L inhibition was 0.909 µmol/L. At 3 µmol/L, CPU228 significantly suppressed the Ca2+ transients. 4CPU228 is able to block ICa,L, contributing to decreased TDP, while also blocking IKr activity. By combined blockade of IKr and ICa,L, CPU228 shares the property of complex Class III anti-arrhythmic agents. [source]


Oscillatory transient inward currents in ventricular myocytes of healthy versus myopathic Syrian hamster

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2004
Sze-Hsueh Wu
Summary 1.,The present experiments were performed in order to study abnormal action potential configuration and ion channel activity in ventricular myocytes obtained from 23 male myopathic Syrian hamsters (Biobreeders strain 14.6, 32,52 weeks old) compared with 10 age-matched healthy control hamsters (Biobreeders F1B) by means of whole-cell patch-clamp techniques. 2.,The results show that the myopathic myocytes had a longer action potential duration, a reduced transient outward K+ current on depolarization and a smaller transient inward current on repolarization after prolonged depolarizing pulses (> 500 msec). However, the L-type Ca2+ current and the inwardly rectifing K+ current were not significantly different from those of healthy myocytes. 3.,The oscillatory transient inward currents could be diminished by treatment with ryanodine (0.01,1 µmol/L), a sarcoplasmic reticulum (SR) Ca2+ release channel blocker, or with Na+ -free superfusate. 4.,We conclude that the hereditary myopathic hamsters are less likely to develop delayed afterdepolarization-related transient inward currents and triggered arrhythmias owing to a smaller SR Ca2+ content. [source]


Differential sensitivity to calciseptine of L-type Ca2+ currents in a ,lower'vertebrate (Scyliorhinus canicula), a protochordate (Branchiostoma lanceolatum) and an invertebrate (Alloteuthis subulata)

EXPERIMENTAL PHYSIOLOGY, Issue 6 2001
Candida M. Rogers
Voltage-dependent calcium currents in vertebrate (Scyliorhinus canicula), protochordate (Branchiostoma lanceolatum), and invertebrate (Alloteuthis subulata) skeletal and striated muscle were examined under whole-cell voltage clamp. Nifedipine (10 ,M) suppressed and cobalt (5 mM) blocked striated/skeletal muscle calcium currents in all of the animals examined, confirming that they are of the L-type class. Calciseptine, a specific blocker of vertebrate cardiac muscle and neuronal L-type calcium currents, was applied (0.2 ,M) under whole-cell voltage clamp. Protochordate and invertebrate striated muscle L-type calcium currents were suppressed while up to 4 ,M calciseptine had no effect on dogfish skeletal muscle L-type calcium currents. Our results demonstrate the presence of at least two sub-types of L-type calcium current in these different animals, which may be distinguished by their calciseptine sensitivity. We conclude that the invertebrate and protochordate L-type current sub-type that we have examined has properties in common with vertebrate ,cardiac' and ,neuronal' current sub-types, but not the skeletal muscle sub-type of the L-type channel. [source]


Changes in Left Ventricular Repolarization and Ion Channel Currents Following a Transient Rate Increase Superimposed on Bradycardia in Anesthetized Dogs

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 6 2000
MICHAEL RUBART M.D.
Electrical Remodeling of the Heart due to Rate. Introduction: We previously demonstrated in dogs that a transient rate increase superimposed on bradycardia causes prolongation of ventricular refractoriness that persists for hours after resumption of bradycardia. In this study, we examined changes in membrane currents that are associated with this phenomenon. Methods and Results: The whole cell, patch clamp technique was used to record transmembrane voltages and currents, respectively, in single mid-myocardial left ventricular myocytes from dogs with 1 week of complete AV block; dogs either underwent 1 hour of left ventricular pacing at 120 beats/min or did not undergo pacing. Pacing significantly heightened mean phase 1 and peak plateau amplitudes by ,6 and ,3 mV, respectively (P < 0.02). and prolonged action potential duration at 90% repolarization from 235 ± 8 msec to 278 ± 8 msec (1 Hz; P = 0.02). Rapid pacing-induced changes in transmembrane ionic currents included (1) a more pronounced cumulative inactivation of the 4-aminopyridine-sensitive transient outward K+ current, I to over the range of physiologic frequencies, resulting from a ,30% decrease in the population of quickly reactivating channels; (2) increases in peak density of L-type Ca2+ currents, Ica.I.' by 15% to 35% between +10 and +60 mV; and (3) increases in peak density of the Ca2+ -activated chloride current, ICl.Ca' by 30% to 120% between +30 and +50 mV. Conclusion: Frequency-dependent reduction in Ito combined with enhanced ICa.I. causes an increase in net inward current that may he responsible for the observed changes in ventricular repolarization. This augmentation of net cation influx is partially antagonized by an increase in outward ICa.Cl. [source]